
MAD-NG Reference Manual (DRAFT)
Methodical Accelerator Design
Release 0.9.4 – 2021.02

Laurent Deniau.
Accelerator Beam Physics,
CERN, Meyrin, Switzerland.

Abstract
The Methodical Accelerator Design – Next Generation application is an
all-in-one standalone versatile tool for particle accelerator design, mod-
eling, and optimization, and for beam dynamics and optics studies. Its
general purpose scripting language is based on the simple yet power-
ful Lua programming language (with a few extensions) and embeds the
state-of-art Just-In-Time compiler LuaJIT. Its physics is based on sym-
plectic integration of differential maps made out of GTPSA (General-
ized Truncated Power Series). The physics of the transport maps and
the normal form analysis were both strongly inspired by the PTC/FPP
library from E. Forest. MAD-NG development started in 2016 by the
author as a side project of MAD-X, hence MAD-X users should quickly
become familiar with its ecosystem, e.g. lattices definition.

http://cern.ch/mad

Keywords
Methodical Accelerator Design; Accelerator beam physics; Scientific
computing; JIT compiler; C and Lua programming.

2

Contents

I General 12

1 Introduction 13
1 Presentation . 13
2 Installation . 13
2.1 Releases version . 14
3 Interactive Mode . 14
4 Batch Mode . 15
5 Online Help . 15

2 Scripting 17
1 Lua and LuaJIT . 17
2 Lua primer . 17
2.1 Variables . 18
2.2 Control flow . 18
2.3 Functions . 19
2.4 Tables . 19
2.5 Methods . 20
3 Extensions . 21
3.1 Line comment . 21
3.2 Unary plus . 21
3.3 Local in table . 21
3.4 Lambda function . 22
3.5 Deferred expression . 23
3.6 Ranges . 23
3.7 Lua syntax and extensions . 24
4 Types . 24
4.1 Value vs reference . 25
5 Concepts . 26
6 Ecosystem . 26

3 Objects 28
1 Creation . 28
1.1 Constructors . 28
1.2 Incomplete objects . 29
1.3 Classes . 29
1.4 Identification . 29

3

1.5 Customizing creation . 30
2 Inheritance . 30
2.1 Reading attributes . 30
2.2 Writing attributes . 31
2.3 Class instances . 31
2.4 Examples . 31
3 Attributes . 32
4 Methods . 33
5 Metamethods . 36
6 Flags . 37
7 Environments . 37

4 Beams 39
1 Attributes . 39
2 Methods . 40
3 Metamethods . 41
4 Particles database . 41
5 Particle charges . 41
6 Examples . 42

5 Beta0 Blocks 43
1 Attributes . 43
2 Methods . 43
3 Metamethods . 43
4 Examples . 43

6 Elements 44
1 Taxonomy . 44
2 Attributes . 46
3 Methods . 47
4 Metamethods . 48
5 Elements . 49
5.1 SBend . 49
5.2 RBend . 49
5.3 Quadrupole . 50
5.4 Sextupole . 50
5.5 Octupole . 51
5.6 Decapole . 51
5.7 Dodecapole . 51
5.8 Solenoid . 51

4

5.9 Multipole . 51
5.10 TKicker . 51
5.11 Kicker, HKicker, VKicker . 52
5.12 Monitor, HMonitor, VMonitor . 52
5.13 RFCavity . 52
5.14 RFMultipole . 52
5.15 ElSeparator . 53
5.16 Wiggler . 53
5.17 BeamBeam . 53
5.18 GenMap . 53
5.19 SLink . 53
5.20 Translate . 54
5.21 XRotation, YRotation, SRotation . 54
5.22 ChangeRef . 54
5.23 ChangeDir . 54
5.24 ChangeNrj . 54
6 Flags . 54
7 Fringe fields . 55
8 Sub-elements . 55
9 Aperture . 56
10 Misalignment . 57

7 Sequences 59
1 Attributes . 59
2 Methods . 59
3 Metamethods . 63
4 Sequences creation . 64
5 Elements positions . 64
6 Elements selections . 65
7 Indexes, names and counts . 65
8 Iterators and ranges . 66
9 Examples . 67
9.1 FODO cell . 67
9.2 SPS compact description . 68
9.3 Installing elements I . 69
9.4 Installing elements II . 70

8 MTables 71
1 Attributes . 71

5

2 Methods . 72
3 Metamethods . 76
4 MTables creation . 77
5 Rows selections . 77
6 Indexes, names and counts . 78
7 Iterators and ranges . 79
8 Examples . 80
8.1 Creating a MTable . 80
8.2 Extending a MTable . 80

9 MADX 82
1 Environment . 82
2 Importing Sequences . 82
3 Converting Scripts . 82
4 Converting Macros . 82

II Commands 83

10 Introduction 84

11 Survey 85
1 Command synopsis . 85
2 Survey mtable . 88
3 Geometrical tracking . 89
3.1 Slicing . 89
3.2 Sub-elements . 90
4 Examples . 90

12 Track 91
1 Command synopsis . 91
2 Track mtable . 95
3 Dynamical tracking . 96
3.1 Slicing . 97
3.2 Sub-elements . 97
3.3 Particles status . 98
4 Examples . 98

13 Cofind 99
1 Command synopsis . 99
2 Cofind mtable . 103

6

3 Examples . 103

14 Twiss 104
1 Command synopsis . 104
2 Twiss mtable . 109
3 Tracking linear normal form . 112
4 Examples . 112

15 Match 113
1 Command synopsis . 113
2 Environment . 114
3 Command . 115
4 Variables . 116
5 Constraints . 117
6 Objective . 119
7 Algorithms . 121
7.1 Stopping criteria . 122
7.2 Objective function . 123
7.3 Derivatives . 123
8 Console output . 124
9 Modules . 124
9.1 LSopt . 124
9.2 NLopt . 125
10 Examples . 127
10.1 Matching tunes and chromaticity . 127
10.2 Matching interaction point . 129
10.3 Fitting data . 130
10.4 Fitting data with derivatives . 131
10.5 Minimizing function . 132

16 Correct 134
1 Command synopsis . 134
2 Correct mtable . 136
3 Examples . 137

17 Emit 138

18 Plot 139
1 Command synopsis . 139

7

III Physics 140

19 Introduction 141
1 Local reference system . 141
2 Global reference system . 141

20 Geometric Maps 143

21 Dynamic Maps 144

22 Integrators 145

23 Orbit 146
1 Closed Orbit . 146

24 Optics 147

25 Normal Forms 148

26 Misalignments 149

27 Aperture 150

28 Radiation 151

IV Modules 152

29 Introduction 153

30 Types 154

31 Constants 155

32 Generic Utilities 156

33 Generic Math 157

34 Range 158

35 Complex 159

36 Matrix 160

37 GTPSA 161

8

38 DA Map 162

39 Generic Physics 163

40 External modules 164

V Programming 165

41 Introduction 166

42 MAD environment 167

43 Tests 168
1 Adding Tests . 168

44 Elements 169
1 Adding Elements . 169

45 Commands 170
1 Adding Commands . 170

46 Modules 171
1 Adding Modules . 171
2 Embedding Modules . 171

47 Using C FFI 172

VI Appendix 173

48 GitHub Repository 174

49 Contributors 175

50 Bibliography 176

51 Index 177

9

List of Figures

2.1 MAD-NG ecosystem and status. 27

3.1 Object model and inheritance. 32

6.1 Reference system for a sector bending magnet. 49
6.2 Reference system for a rectangular bending magnet. 50
6.3 Displacements in the (x, s) plane. 57
6.4 Displacements in the (y, s) plane. 58
6.5 Displacements in the (x, y) plane. 58

11.1 Survey command synopsis . 85
11.2 Geometrical tracking with slices. 89

12.1 Track command synopsis . 92
12.2 Dynamical tracking with slices. 97

13.1 Cofind command synopsis . 100

14.1 Twiss command synopsis . 105

15.1 Match command synopsis . 113
15.2 Match command summary output . 125
15.3 Match command intermediate output . 126
15.4 Fitting data . 130
15.5 Fitting data with noise . 131
15.6 Fitting data with derivatives . 132

16.1 Correct command synopsis . 134

18.1 Plot command synopsis . 139

19.1 Local Reference System . 141
19.2 Global Reference System . 142

10

List of Tables

2.1 Operators precedence . 24

15.1 Match returned status . 115
15.2 Match default weights list . 119
15.3 List of least squares methods . 127
15.4 List of non-linear local methods . 127
15.5 List of non-linear global methods . 128

Foreword

This textbook is in a very draft version...

Temporary abbreviations used in the text:

TBD To Be Documented

TBR To Be Reviewed

NYI Not Yet Implemented

Todo To Do

11

Part I

General

12

Chapter 1. Introduction

1 Presentation
The Methodical Accelerator Design – Next Generation application is an all-in-one standalone
versatile tool for particle accelerator design, modeling, and optimization, and for beam dynam-
ics and optics studies. Its general purpose scripting language is based on the simple yet powerful
Lua programming language (with a few extensions) and embeds the state-of-art Just-In-Time
compiler LuaJIT. Its physics is based on symplectic integration of differential maps made out of
GTPSA (Generalized Truncated Power Series). The physics of the transport maps and the nor-
mal form analysis were both strongly inspired by the PTC/FPP library from E. Forest. MAD-
NG development started in 2016 by the author as a side project of MAD-X, hence MAD-X
users should quickly become familiar with its ecosystem, e.g. lattices definition.
MAD-NG is free open-source software, distributed under the GNU General Public License
v3.1 The source code, units tests,2 integration tests, and examples are all available on its Github
repository, including the documentation and its LATEX source. For convenience, the binaries and
few examples are also made available from the releases repository located on the AFS shared
file system at CERN.

2 Installation
Download the binary corresponding to your platform from the releases repository and install
it in a local directory. Update (or check) that the PATH environment variable contains the path
to your local directory or prefix mad with this path to run it. Rename the application from
mad-arch-v.m.n to mad and make it executable with the command ’chmod u+x mad’ on Unix
systems or add the .exe extension on Windows.

$./mad −h
usage: ./mad [options]... [script [args]...].

Available options are:

−e chunk Execute string ’chunk’.

−l name Require library ’name’.

−b ... Save or list bytecode.

−j cmd Perform JIT control command.

−O[opt] Control JIT optimizations.

−i Enter interactive mode after executing ’script’.

−q Do not show version information.

−M Do not load MAD environment.

−Mt[=num] Set initial MAD trace level to ’num’.

−MT[=num] Set initial MAD trace level to ’num’ and location.

−E Ignore environment variables.

−− Stop handling options.

− Execute stdin and stop handling options.

1MAD-NG embeds the libraries FFTW, NFFT and NLopt released under GNU (L)GPL too.
2MAD-NG has few thousands unit tests that do few millions checks, and it is constantly growing.

13

https://github.com/MethodicalAcceleratorDesign/MAD
https://github.com/MethodicalAcceleratorDesign/MADdocs
http://cern.ch/mad/releases/madng/
http://cern.ch/mad/releases/madng/
http://github.com/FFTW
http://github.com/NFFT
http://github.com/stevengj/nlopt

3. INTERACTIVE MODE 14

2.1 Releases version
MAD-NG releases are tagged on the Github repository and use mangled binary names on the releases
repository, i.e. mad-arch-v.m.n where:

arch is the platform architecture for binaries among linux, macos and windows.
v is the version number, 0 meaning beta-version under active development.
m is the major release number corresponding to features completeness.
n is the minor release number corresponding to bug fixes.

3 Interactive Mode
To run MAD-NG in interactive mode, just typewrite its name on the Shell invite like any command-line
tool. It is recommended to wrap MAD-NG with the readline wrapper rlwrap in interactive mode for
easier use and commands history:

$ rlwrap ./mad
____ __ ______ ______ | Methodical Accelerator Design

/ \/ \ / _ \ / _ \ | release: 0.9.0 (OSX 64)

/ __ / / /_/ / / /_/ / | support: http://cern.ch/mad

/__/ /_/ /__/ /_/ /_____ / | licence: GPL3 (C) CERN 2016+

| started: 2020-08-01 20:13:51

> print "hello world!"

"hello world!"

Here the application is assumed to be installed in the current directory ’.’ and the character ’>’ is the
prompt waiting for user input in interactive mode. If you write an incomplete statement, the interpreter
waits for its completion by issuing a different prompt:

> print −− 1st level prompt, incomplete statement

>> "hello world!" −− 2nd level prompt, complete the statement

hello world! −− execute

Typing the character ’=’ right after the 1st level prompt is equivalent to call the print function:

> = "hello world!" −− 1st level prompt followed by =

hello world! −− execute print "hello world!"

> = MAD.option.numfmt

% −.10g

To quit the application typewrite Crtl+D to send EOF (end-of-file) on the input,3 or Crtl+\ to send the
SIGQUIT (quit) signal, or Crtl+C to send the stronger SIGINT (interrupt) signal. If the application is
stalled or looping for ever, typewriting a single Crtl+\ or Crtl+C twice will stop it:

> while true do end −− loop forever, 1st Crtl+C doesn’t stop it

pending interruption in VM! (next will exit) −− 2nd Crtl+C

interrupted! −− application stopped

> while true do end −− loop forever, a single Crtl+\ does stop it

Quit: 3 −− Signal 3 caught, application stopped

3Note that sending Crtl+D twice from MAD-NG invite will quit both MAD-NG and its parent Shell. . .

http://github.com/hanslub42/rlwrap

4. BATCH MODE 15

In interactive mode, each line input is run in its own chunk4, which also rules variables scopes. Hence
local variables are not visible between chuncks, i.e. input lines. The simple solutions are either to
use global variables or to enclose local statements into the same chunk delimited by the do ... end

keywords:

> local a = "hello"

> print(a.." world!")

stdin:1: attempt to concatenate global ’a’ (a nil value)

stack traceback:

stdin:1: in main chunk

[C]: at 0x01000325c0

> do −− 1st level prompt, open the chunck

>> local a = "hello" −− 2nd level prompt, waiting for statement completion

>> print(a.." world!") −− same chunk, local ’a’ is visible

>> end −− close and execute the chunk

hello world!

> print(a) −− here ’a’ is an unset global variable

nil

> a = "hello" −− set global ’a’

> print(a.." world!") −− works but pollutes the global environment

hello world!

4 Batch Mode
To run MAD-NG in batch mode, just run it in the shell with files as arguments on the command line:

$./mad [mad options] myscript1.mad myscript2.mad ...

where the scripts contains programs written in the MAD-NG programming language (see Scripting).

5 Online Help
MAD-NG is equipped with an online help system5 useful in interactive mode to quickly search for
information displayed in the man-like Unix format :

> help()

Related topics:

MADX, aperture, beam, cmatrix, cofind, command, complex, constant, correct,

ctpsa, cvector, dynmap, element, filesys, geomap, gfunc, gmath, gphys, gplot,

gutil, hook, lfun, linspace, logrange, logspace, match, matrix, mflow,

monomial, mtable, nlogrange, nrange, object, operator, plot, range, reflect,

regex, sequence, strict, survey, symint, symintc, tostring, totable, tpsa,

track, twiss, typeid, utest, utility, vector.

> help "MADX"

NAME

MADX environment to emulate MAD-X workspace.

4A chunk is the unit of execution in Lua (see Lua 5.2 §3.3.2).
5The online help is far incomplete and will be completed, updated and revised as the application evolves.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

5. ONLINE HELP 16

SYNOPSIS

local lhcb1 in MADX

DESCRIPTION

This module provide the function ’load’ that read MADX sequence and optics

files and load them in the MADX global variable. If it does not exist, it will

create the global MADX variable as an object and load into it all elements,

constants, and math functions compatible with MADX.

RETURN VALUES

The MADX global variable.

EXAMPLES

MADX:open()

-- inline definition

MADX:close()

SEE ALSO

element, object.

Complementary to the help function, the function show displays the type and value of variables, and if
they have attributes, the list of their names in the lexicographic order:

> show "hello world!"

:string: hello world!

> show(MAD.option)

:table: MAD.option

colwidth :number: 18

hdrwidth :number: 18

intfmt :string: % −10d
madxenv :boolean: false

nocharge :boolean: false

numfmt :string: % −.10g
ptcmodel :boolean: false

strfmt :string: % −25s

Chapter 2. Scripting

The choice of the scripting language for MAD-NG was sixfold: the simplicity and the completeness
of the programming language, the portability and the efficiency of the implementation, and its easiness
to be extended and embedded in an application. In practice, very few programming languages and
implementations fulfill these requirements, and Lua and his Just-In-Time (JIT) compiler LuaJIT were not
only the best solutions but almost the only ones available when the development of MAD-NG started in
2016.

1 Lua and LuaJIT
The easiest way to shortly describe these choices is to cite their authors.

“Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural pro-
gramming, object-oriented programming, functional programming, data-driven programming, and data
description. Lua combines simple procedural syntax with powerful data description constructs based
on associative arrays and extensible semantics. Lua is dynamically typed and has automatic memory
management with incremental garbage collection, making it ideal for configuration, scripting, and rapid
prototyping.”1

“LuaJIT is widely considered to be one of the fastest dynamic language implementations. It has outper-
formed other dynamic languages on many cross-language benchmarks since its first release in 2005 —
often by a substantial margin — and breaks into the performance range traditionally reserved for offline,
static language compilers.”2

Lua and LuaJIT are free open-source software, distributed under the very liberal MIT license.

MAD-NG embeds a patched version of LuaJIT 2.1, a very efficient implementation of Lua 5.2.3 Hence,
the scripting language of MAD-NG is Lua 5.2 with some extensions detailed in the next section, and
used for both, the development of most parts of the application, and as the user scripting language. There
is no strong frontier between these two aspects of the application, giving full access and high flexibility
to the experienced users. The filename extension of MAD-NG scripts is .mad.

Learning Lua is easy and can be achieved within a few hours. The following links should help to quickly
become familiar with Lua and LuaJIT:

– Lua website.
– Lua 5.2 manual for MAD-NG (30 p. PDF).
– Lua 5.0 free online book (old).
– LuaJIT website.
– LuaJIT wiki.
– LuaJIT 2.1 documentation.
– LuaJIT 2.1 on GitHub.

2 Lua primer
The next subsections introduce the basics of the Lua programming language with syntax highlights,
namely variables, control flow, functions, tables and methods.4

1This text is taken from the "What is Lua?" section of the Lua website.
2This text is taken from the "Overview" section of the LuaJIT website.
3The ENV feature of Lua 5.2 is not supported and will never be according to M. Pall.
4This primer was adapted from the blog "Learn Lua in 15 minutes" by T. Neylon.

17

http://www.lua.org
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://www.lua.org/pil/contents.html
http://luajit.org
http://wiki.luajit.org/Home
https://repo.or.cz/w/luajit-2.0.git/blob_plain/v2.1:/doc/luajit.html
https://github.com/LuaJIT/LuaJIT

2. LUA PRIMER 18

2.1 Variables
n = 42 −− All numbers are doubles, but the JIT may specialize them.

−− IEEE−754 64−bit doubles have 52 bits for storing exact int values;

−− machine precision is not a problem for ints < 1e16.

s = ’walternate’ −− Immutable strings like Python.

t = "double−quotes are also fine"

u = [[Double brackets

start and end

multi−line strings.]]

v = "double−quotes \z

are also fine" −− \z eats next whitespaces

t, u, v = nil −− Undefines t, u, v.

−− Lua has multiple assignments and nil completion.

−− Lua has garbage collection.

−− Undefined variables return nil. This is not an error:

foo = anUnknownVariable −− Now foo = nil.

2.2 Control flow
−− Blocks are denoted with keywords like do/end:

while n < 50 do

n = n + 1 −− No ++ or += type operators.

end

−− If clauses:

if n > 40 then

print(’over 40’)

elseif s ~= ’walternate’ then −− ~= is not equals.

−− Equality check is == like Python; ok for strs.

io.write(’not over 40\n’) −− Defaults to stdout.

else

−− Variables are global by default.

thisIsGlobal = 5 −− Camel case is common.

−− How to make a variable local:

local line = io.read() −− Reads next stdin line.

−− String concatenation uses the .. operator:

print(’Winter is coming, ’..line)

end

−− Only nil and false are falsy; 0 and ’’ are true!

aBoolValue = false

if not aBoolValue then print(’was false’) end

−− ’or’ and ’and’ are short−circuited.
−− This is similar to the a?b:c operator in C/js:

ans = aBoolValue and ’yes’ or ’no’ −−> ans = ’no’

−− numerical for begin, end[, step] (end included)

2. LUA PRIMER 19

revSum = 0

for j = 100, 1, −1 do revSum = revSum + j end

2.3 Functions

function fib(n)

if n < 2 then return 1 end

return fib(n − 2) + fib(n − 1)

end

−− Closures and anonymous functions are ok:

function adder(x)

−− The returned function is created when adder is

−− called, and captures the value of x:

return function (y) return x + y end

end

a1 = adder(9)

a2 = adder(36)

print(a1(16)) −−> 25

print(a2(64)) −−> 100

−− Returns, func calls, and assignments all work with lists

−− that may be mismatched in length.

−− Unmatched receivers get nil; unmatched senders are discarded.

x, y, z = 1, 2, 3, 4

−− Now x = 1, y = 2, z = 3, and 4 is thrown away.

function bar(a, b, c)

print(a, b, c)

return 4, 8, 15, 16, 23, 42

end

x, y = bar(’zaphod’) −−> prints "zaphod nil nil"

−− Now x = 4, y = 8, values 15,..,42 are discarded.

−− Functions are first−class, may be local/global.

−− These are the same:

function f(x) return x * x end

f = function (x) return x * x end

−− And so are these:

local function g(x) return math.sin(x) end

local g; g = function (x) return math.sin(x) end

−− the ’local g’ decl makes g−self−references ok.

−− Calls with one string param don’t need parens:

print ’hello’ −− Works fine.

2.4 Tables

−− Tables = Lua’s only compound data structure;

2. LUA PRIMER 20

−− they are associative arrays, i.e. hash−lookup dicts;

−− they can be used as lists, i.e. sequence of non−nil values.

−− Dict literals have string keys by default:

t = {key1 = ’value1’, key2 = false, [’key.3’] = true }

−− String keys looking as identifier can use dot notation:

print(t.key1, t[’key.3’]) −− Prints ’value1 true’.

−− print(t.key.3) −− Error, needs explicit indexing by string

t.newKey = {} −− Adds a new key/value pair.

t.key2 = nil −− Removes key2 from the table.

−− Literal notation for any (non−nil) value as key:

u = {[’@!#’] = ’qbert’, [{}] = 1729, [6.28] = ’tau’}

print(u[6.28]) −− prints "tau"

−− Key matching is basically by value for numbers

−− and strings, but by identity for tables.

a = u[’@!#’] −− Now a = ’qbert’.

b = u[{}] −− We might expect 1729, but it’s nil:

−− A one−table−param function call needs no parens:

function h(x) print(x.key1) end

h{key1 = ’Sonmi~451’} −− Prints ’Sonmi~451’.

for key, val in pairs(u) do −− Table iteration.

print(key, val)

end

−− List literals implicitly set up int keys:

l = {’value1’, ’value2’, 1.21, ’gigawatts’}

for i,v in ipairs(l) do −− List iteration.

print(i,v,l[i]) −− Indices start at 1 !

end

print("length=", #l) −− # is defined only for sequence.

−− A ’list’ is not a real type, l is just a table

−− with consecutive integer keys, treated as a list,

−− i.e. l = {[1]=’value1’, [2]=’value2’, [3]=1.21, [4]=’gigawatts’}

−− A ’sequence’ is a list with non−nil values.

2.5 Methods

−− Methods notation:

−− function tblname:fn(...) is the same as

−− function tblname.fn(self, ...) with self being the table.

−− calling tblname:fn(...) is the same as

−− tblname.fn(tblname, ...) here self becomes the table.

t = { disp=function(s) print(s.msg) end, −− Method ’disp’

msg="Hello world!" }

t:disp() −− Prints "Hello world!"

function t:setmsg(msg) self.msg=msg end −− Add a new method ’setmsg’

3. EXTENSIONS 21

t:setmsg "Good bye!"

t:disp() −− Prints "Good bye!"

3 Extensions
The aim of the extensions patches applied to the embedded LuaJIT in MAD-NG is to extend the Lua
syntax in handy directions, like for example to support the deferred expression operator. A serious effort
has been put to develop a Domain Specific Language (DSL) embedded in Lua using these extensions and
the native language features to mimic as much as possible the syntax of MAD-X in the relevant aspects
of the language, like the definition of elements, lattices or commands, and ease the transition of MAD-X
users.

Bending and extending a programming language like Lua to embed a DSL is more general and challen-
ging than creating a freestanding DSL like in MAD-X. The former is compatible with the huge codebase
written by the Lua community, while the latter is a highly specialized niche language. The chosen ap-
proach attempts to get the best of the two worlds.

3.1 Line comment
The line comment operator ! is valid in MAD-NG, but does not exists in Lua:5

local a = 1 ! this remaining part is a comment

local b = 2 −− line comment in Lua

3.2 Unary plus
The unary plus operator + is valid in MAD-NG, but does not exists in Lua:5

local a = +1 −− syntax error in Lua

local b = +a −− syntax error in Lua

3.3 Local in table
The local in table syntax provides a convenient way to retrieve values from a mappable and avoid error-
prone repetitions of attributes names. The syntax is as follows:

local sin, cos, tan in math −− syntax error in Lua

local a, b, c in { a=1, b=2, c=3 }

! a, b, c in { a=1, b=2, c=3 } −− invalid with global variables

which is strictly equivalent to the Lua code:

local sin, cos, tan = math.sin, math.cos, math.tan

local tbl = { a=1, b=2, c=3 }

local a, b, c = tbl.a, tbl.b, tbl.c

! local sin, cos, tan = math.cos, math.sin, math.tan −− nasty typo

The JIT has many kinds of optimization to improve a lot the execution speed of the code, and these work
much better if variables are declared local with minimal lifespan. This language extension is of first
importance for writing fast clean code!

5This feature was introduced to ease the automatic translation of lattices from MAD-X to MAD-NG.

3. EXTENSIONS 22

3.4 Lambda function
The lambda function syntax is pure syntactic sugar for function definition and therefore fully compatible
with the Lua semantic. The following definitions are all semantically equivalent:

local f = function(x) return x^2 end −− Lua syntax

local f = \x x^2 −− most compact form

local f = \x −> x^2 −− most common form

local f = \(x) −> x^2 −− for readability

local f = \(x) −> (x^2) −− less compact form

local f = \x (x^2) −− uncommon valid form

local f = \(x) x^2 −− uncommon valid form

local f = \(x) (x^2) −− uncommon valid form

The important point is that no space must be present between the lambda operator \ and the first formal
parameter or the first parenthesis; the former will be considered as an empty list of parameters and the
latter as an expressions list returning multiple values, and both will trigger a syntax error. For the sake of
readability, it is possible without changing the semantic to add extra spaces anywhere in the definition,
add an arrow operator −>, or add parentheses around the formal parameter list, whether the list is empty
or not.

The following examples show lambda functions with multiple formal parameters:

local f = function(x,y) return x+y end −− Lua syntax

local f = \x x+y −− most compact form

local f = \x,y −> x+y −− most common form

local f = \x, y −> x + y −− aerial style

The lambda function syntax supports multiple return values by enclosing the list of returned expressions
within (not optional!) parentheses:

local f = function(x,y) return x+y, x−y end −− Lua syntax

local f = \x,y(x+y,x−y) −− most compact form

local f = \x,y −> (x+y,x−y) −− most common form

Extra surrounding parentheses can also be added to disambiguate false multiple return values syntax:

local f = function(x,y) return (x+y)/2 end −− Lua syntax

local f = \x,y −> ((x+y)/2) −− disambiguation: single value returned

! local f = \x,y −> (x+y)/2 −− invalid syntax at ’/’

local f = function(x,y) return (x+y)*(x−y) end −− Lua syntax

local f = \x,y −> ((x+y)*(x−y)) −− disambiguation: single value returned

! local f = \x,y −> (x+y)*(x−y) −− invalid syntax at ’*’

It is worth understanding the error message that invalid syntaxes above would report,

file:line: attempt to perform arithmetic on a function value.

as it is a bit subtle and needs some explanations: the lambda is syntactically closed at the end of the
returned expression (x+y), and the following operations / or * are considered as being outside the
lambda definition, that is applied to the freshly created function itself. . .

Finally, the lambda function syntax supports full function syntax (for consistency) using the fat arrow
operator => in place of the arrow operator:

local c = 0

3. EXTENSIONS 23

local f = function(x) c=c+1 return x^2 end −− Lua syntax

local f = \x => c=c+1 return x^2 end −− most compact form

The fat arrow operator requires the end keyword to close syntactically the lambda function, and the
return keyword to return values (if any), as in Lua functions definitions.

3.5 Deferred expression
The deferred expression operator := is semantically equivalent to a lambda function without argument.
It is syntactically valid only inside table constructors (see Lua 5.2 §3.4.8):6

local var = 10

local fun = \−> var

! local fun := var −− invalid syntax outside table constructors

local tbl = { v1 := var, v2 =\−> var, v3 = var }

print(tbl.v1(), tbl.v2(), tbl.v3, fun()) −− display: 10 10 10 10

var = 20

print(tbl.v1(), tbl.v2(), tbl.v3, fun()) −− display: 20 20 10 20

The deferred expressions hereabove have to be explicitly called to retrieve their values, because they
are defined in a table. It is a feature of the object model making the deferred expressions behaving like
values. Still, it is possible to support deferred expressions as values in a raw table, i.e. a table without
metatable, using the deferred function from the typeid module:

local deferred in MAD.typeid

local var = 10

local tbl = deferred { v1 := var, v2 =\−> var, v3 = var }

print(tbl.v1, tbl.v2, tbl.v3) −− display: 10 10 10

var = 20

print(tbl.v1, tbl.v2, tbl.v3) −− display: 20 20 10

3.6 Ranges
The ranges are created from pairs or triplets of concatenated numbers:7

start..stop..step −− order is the same as numerical ’for’

start..stop −− default step is 1

3..4 −− spaces are not needed around concat operator

3..4..0.1 −− floating numbers are handled

4..3..−0.1 −− negative steps are handled

stop..start..−step −− operator precedence

The default value for unspecified step is 1. The Lua syntax has been modified to accept concatenation
operator without surrounding spaces for convenience.

Ranges are iterable and lengthable so the following code excerpt is valid:

local rng = 3..4..0.1

print(#rng) −− display: 11

for i,v in ipairs(rng) do print(i,v) end

More details on ranges can be found in the Range module, especially about the range and logrange

constructors that may adjust step to ensure precise loops and iterators behaviors with floating-point
numbers.

6This feature was introduced to ease the automatic translation of lattices from MAD-X to MAD-NG.
7This is the only feature of MAD-NG that is incompatible with the semantic of Lua.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

4. TYPES 24

3.7 Lua syntax and extensions
The operator precedence (see Lua 5.2 §3.4.7) is recapped and extended in Table 2.1 with their precedence
level (on the left) from lower to higher priority and their associativity (on the right).

Table 2.1: Operators precedence with priority and associativity.

1: or left
2: and left
3: < > <= >= ~= == left
4: .. right
5: + − (binary) left
6: * / % left
7: not # − + (unary) left
8: ^ right
9: . [] () (call) left

The string literals, table constructors, and lambda definitions can be combined with function calls (see
Lua 5.2 §3.4.9) advantageously like in the object model to create objects in a similar way to MAD-X.
The following function calls are semantically equivalent by pairs:

! with parentheses ! without parentheses

func(’hello world!’) func ’hello world!’

func("hello world!") func "hello world!"

func([[hello world!]]) func [[hello world!]]

func({...fields...}) func {...fields...}

func(\x −> x^2) func \x −> x^2

func(\x,y −> (x+y,x−y)) func \x,y −> (x+y,x−y)

4 Types
MAD-NG is based on Lua, a dynamically typed programming language that provides the following
basic types often italicized in this textbook:

nil The type of the value nil. Uninitialized variables, unset attributes, mismatched argu-
ments, mismatched return values etc, have nil values.

boolean The type of the values true and false.

number The type of IEEE 754 double precision floating point numbers. They are exact for in-
tegers up to ±253 (≈ ±1016). Value like 0, 1, 1e3, 1e−3 are numbers.

string The type of character strings. Strings are “internalized” meaning that two strings with
the same content compare equal and share the same memory address:
a="hello"; b="hello"; print(a==b) −−display: true.

table The type of tables, see Lua 5.2 §3.4.8 for details. In this textbook, the following qualified
types are used to distinguish between two kinds of special use of tables:

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

4. TYPES 25

– A list is a table used as an array, that is a table indexed by a continuous sequence
of integers starting from 1 where the length operator # has defined behavior.8

– A set is a table used as a dictionnary, that is a table indexed by keys — strings or
other types — or a sparse sequence of integers where the length operator # has
undefined behavior.

function The type of functions, see Lua 5.2 §3.4.10 for details. In this textbook, the following
qualified types are used to distinguish between few kinds of special use of functions:

– A lambda is a function defined with the \ syntax.
– A functor is an object9 that behaves like a function.
– A method is a function called with the : syntax and its owner as first argument. A

method defined with the : syntax has an implicit first argument named self.10

thread The type of coroutines, see Lua 5.2 §2.6 for details.

userdata The type of raw pointers with memory managed by Lua, and its companion lightuser-
data with memory managed by the host language, usually C. They are mainly useful
for interfacing Lua with its C API, but MAD-NG favors the faster FFI11 extension of
LuaJIT.

cdata The type of C data structures that can be defined, created and manipulated directly from
Lua as part of the FFI11 extension of LuaJIT. The numeric ranges, the complex numbers,
the (complex) matrices, and the (complex) GTPSA are cdata fully compatible with the
embedded C code that operates them.

This textbook uses also some extra terms in place of types:

value An instance of any type.

reference A valid memory location storing some value.

logical A value used by control flow, where nil ≡ false and anything-else ≡ true.

4.1 Value vs reference
The types nil, boolean and number have a semantic by value, meaning that variables, arguments, return
values, etc., hold their instances directly. As a consequence, any assignment makes a copy of the value,
i.e. changing the original value does not change the copy.

The types string, function, table, thread, userdata and cdata have a semantic by reference, meaning that
variables, arguments, return values, etc., do not store their instances directly but a reference to them.
As a consequence, any assignment makes a copy of the reference and the instance becomes shared,
i.e. references have a semantic by value but changing the content of the value does change the copy.12

The types string, function13, thread, complex cdata and numeric (log)range cdata have a hybrid se-
mantic. In practice these types have a semantic by reference, but they behave like types with semantic
by value because their instances are immutable, and therefore sharing them is safe.

8The Lua community uses the term sequence instead of list, which is confusing is the context of MAD-NG.
9Here the term “object” is used in the Lua sense, not as an object from the object model of MAD-NG.

10This hidden methods argument is named self in Lua and Python, or this in Java and C++.
11FFI stands for Foreign Function Interface, an acronym well known in high-level languages communities.
12References semantic in Lua is similar to pointers semantic in C, see ISO/IEC 9899:1999 §6.2.5.
13Local variables and upvalues of functions can be modified using the debug module.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

5. CONCEPTS 26

The instances of the (basic) types with semantic by reference are called “objects” in Lua, and should
not be confused with the instances of the object (non-basic) type introduced by the object model of
MAD-NG.

5 Concepts
The concepts are natural extensions of types that concentrate more on behavior of objects9 than on types.
MAD-NG introduces many concepts to validate objects passed as argument before using them. The
main concepts used in this textbook are listed below, see the typeid module for more concepts:

lengthable An object that can be sized using the length operator #. Strings, lists, vectors and ranges
are examples of lengthable objects.

indexable An object that can be indexed using the square bracket operator []. Tables, vectors and
ranges are examples of indexable objects.

iterable An object that can be iterated with a loop over indexes or a generic for with the ipairs
iterator. Lists, vectors and ranges are examples of iterable objects.

mappable An object that can be iterated with a loop over keys or a generic for with the pairs

iterator. Sets and objects (from the object model) are examples of mappable objects.

callable An object that can be called using the call operator (). Functions and functors are
examples of callable objects.

6 Ecosystem
The Figure 2.1 shows a schematic representation of the ecosystem of MAD-NG, which should help the
users to understand the relatioship between the different components of the application. The dashed lines
are grouping the items (e.g. modules) by topics while the arrows are showing interdependencies between
them and the colors their status.

6. ECOSYSTEM 27

Figure 2.1: MAD-NG ecosystem and status.

MAD-NG
Core

(VM+JIT+FFI)

Linear ToolBox
Real & Complex
Vector & Matrix

DA Toolbox
Real & Complex

GTPSA

MADX Env

Elements

Sequence

Beam

Object
Model

MTablePlot

Commands

Survey

Track

COFind

Twiss

Match

DA Map

Geometric
3D Maps

Symplectic
Integrators

Unit Tests

Dynamic
6D Maps

Emit

IBS

COCorrect

Spin Maps
RadiationNormal form

Optical Funs Aperture

 A uses B
A B

A exposes B
A B

A is-a B
A B

Geo/LinAlg Dyn/DiffAlgObjects

Legend

TodoDone DevCommands

Algorithms
Solvers, Eigen,

FFT, Optimisers

Chapter 3. Objects

The object model is of key importance as it implements many features used extensively by objects like
beam, sequence, mtable, all the commands, all the elements, and the MADX environment. The aim of
the object model is to extend the scripting language with concepts like objects, inheritance, methods,
metamethods, deferred expressions, commands and more.

In computer science, the object model of MAD-NG is said to implement the concepts of prototypical
objects, single inheritance and dynamic lookup of attributes:

– A prototypical object is an object created from a prototype,1 named its parent.
– Single inheritance specifies that an object has only one direct parent.
– Dynamic lookup means that undefined attributes are searched in the parents at each read.

A prototype represents the default state and behavior, and new objects can reuse part of the knowledge
stored in the prototype by inheritance, or by defining how the new object differs from the prototype.
Because any object can be used as a prototype, this approach holds some advantages for representing
default knowledge, and incrementally and dynamically modifying them.

1 Creation
The creation of a new object requires to hold a reference to its parent, i.e. the prototype, which indeed
will create the child and return it as if it were returned from a function:

local object in MAD

local obj = object { }

The special root object object from the MAD environment is the parent of all objects, including elements,
sequences, TFS tables and commands. It provides by inheritance the methods needed to handle objects,
environments, and more. In this minimalist example, the created object has object as parent, so it is the
simplest object that can be created.

It is possible to name immutably an object during its creation:

local obj = object ’myobj’ { }

print(obj.name) −− display: myobj

Here,2 obj is the variable holding the object while the string ’myobj’ is the name of the object. It is
important to distinguish well the variable that holds the object from the object’s name that holds the
string, because they are very often named the same.

It is possible to define attributes during object creation or afterward:

local obj = object ’myobj’ { a=1, b=’hello’ }

obj.c = { d=5 } −− add a new attribute c

print(obj.name, obj.a, obj.b, obj.c.d) −− display: myobj 1 hello 5

1.1 Constructors
The previous object creation can be done equivalently using the prototype as a constructor:

local obj = object(’myobj’,{ a=1, b=’hello’ })

1Objects are not clones of prototypes, they share states and behaviors with their parents but do not hold copies.
2This syntax for creating objects eases the lattices translation from MAD-X to MAD-NG.

28

1. CREATION 29

An object constructor expects two arguments, an optional string for the name, and a required table for
the attributes placeholder, optionally filled with initial attributes. The table is used to create the object
itself, so it cannot be reused to create a different object:

local attr = { a=1, b=’hello’ }

local obj1 = object(’obj1’,attr) −− ok

local obj2 = object(’obj2’,attr) −− runtime error, attr is already used.

The following objects creations are all semantically equivalent but use different syntax that may help to
understand the creation process and avoid runtime errors:

−− named objects:

local nobj = object ’myobj’ { } −− two stages creation.

local nobj = object ’myobj’ ({ }) −− idem.

local nobj = object(’myobj’) { } −− idem.

local nobj = object(’myobj’)({ }) −− idem.

local nobj = object(’myobj’, { }) −− one stage creation.

−− unnamed objects:

local uobj = object { } −− one stage creation.

local uobj = object ({ }) −− idem.

local uobj = object() { } −− two stages creation.

local uobj = object()({ }) −− idem.

local uobj = object(nil,{ }) −− one stage creation.

1.2 Incomplete objects
The following object creation shows how the two stage form can create an incomplete object that can
only be used to complete its construction:

local obj = object ’myobj’ −− obj is incomplete, table is missing

print(obj.name) −− runtime error.

obj = obj { } −− now obj is complete.

print(obj.name) −− display: myobj

Any attempt to use an incomplete object will trigger a runtime error with a message like:

file:line: forbidden read access to incomplete object.

or
file:line: forbidden write access to incomplete object.

depending on the kind of access.

1.3 Classes
An object used as a prototype to create new objects becomes a class, and a class cannot change, add,
remove or override its methods and metamethods. This restriction ensures the behavioral consistency
between the children after their creation. An object qualified as final cannot create instances and therefore
cannot become a class.

1.4 Identification
The object module extends the typeid module with the is_object(a) function, which returns true
if its argument a is an object, false otherwise:

2. INHERITANCE 30

local is_object in MAD.typeid

print(is_object(object), is_object(object{}), is_object{})

−− display: true true false

It is possible to know the objects qualifiers using the appropriate methods:

print(object:is_class(), object:is_final(), object:is_readonly())

−− display: true false true

1.5 Customizing creation
During the creation process of objects, the metamethod __init(self) is invoked if it exists, with the
newly created object as its sole argument to let the parent finalize or customize its initialization before it
is returned. This mechanism is used by commands to run their :exec() method during their creation.

2 Inheritance
The object model allows to build tree-like inheritance hierarchy by creating objects from classes, them-
selves created from other classes, and so on until the desired hierarchy is modeled. The example below
shows an excerpt of the taxonomy of the elements as implemented by the element module, with their
corresponding depth levels in comment:

local object in MAD −− depth level 1

local element = object {...} −− depth level 2

local drift_element = element {...} −− depth level 3

local instrument = drift_element {...} −− depth level 4

local monitor = instrument {...} −− depth level 5

local hmonitor = monitor {...} −− depth level 6

local vmonitor = monitor {...} −− depth level 6

local thick_element = element {...} −− depth level 3

local tkicker = thick_element {...} −− depth level 4

local kicker = tkicker {...} −− depth level 5

local hkicker = kicker {...} −− depth level 6

local vicker = kicker {...} −− depth level 6

2.1 Reading attributes
Reading an attribute not defined in an object triggers a recursive dynamic lookup along the chain of its
parents until it is found or the root object is reached. Reading an object attribute defined as a function
automatically evaluates it with the object passed as the sole argument and the returned value is forwarded
to the reader as if it were the attribute’s value. When the argument is not used by the function, it becomes
a deferred expression that can be defined directly with the operator := as explained in section 3.5. This
feature allows to use attributes holding values and functions the same way and postpone design decisions,
e.g. switching from simple value to complex calculations without impacting the users side with calling
parentheses at every use.

The following example is similar to the second example of the section 3.5, and it must be clear that fun
must be explicitly called to retrieve the value despite that its definition is the same as the attribute v2.

local var = 10

local fun = \−> var −− here := is invalid

2. INHERITANCE 31

local obj = object { v1 := var, v2 =\−> var, v3 = var }

print(obj.v1, obj.v2, obj.v3, fun()) −− display: 10 10 10 10

var = 20

print(obj.v1, obj.v2, obj.v3, fun()) −− display: 20 20 10 20

2.2 Writing attributes
Writing to an object uses direct access and does not involve any lookup. Hence setting an attribute with a
non-nil value in an object hides his definition inherited from the parents, while setting an attribute with
nil in an object restores the inheritance lookup:

local obj1 = object { a=1, b=’hello’ }

local obj2 = obj1 { a=\s−> s.b..’ world’ }

print(obj1.a, obj2.a) −− display: 1 hello world

obj2.a = nil

print(obj1.a, obj2.a) −− display: 1 1

This property is extensively used by commands to specify their attributes default values or to rely on
other commands attributes default values, both being overridable by the users.

It is forbidden to write to a read-only objects or to a read-only attributes. The former can be set using
the :readonly method, while the latter corresponds to attributes with names that start by __, i.e. two
underscores.

2.3 Class instances
To determine if an object is an instance of a given class, use the :is_instanceOf method:

local hmonitor, instrument, element in MAD.element

print(hmonitor:is_instanceOf(instrument)) −− display: true

To get the list of public attributes of an instance, use the :get_varkeysmethod:

for _,a in ipairs(hmonitor:get_varkeys()) do print(a) end

for _,a in ipairs(hmonitor:get_varkeys(object)) do print(a) end

for _,a in ipairs(hmonitor:get_varkeys(instrument)) do print(a) end

for _,a in ipairs(element:get_varkeys()) do print(a) end

The code snippet above lists the names of the attributes set by:

– the object hmonitor (only).
– the objects in the hierachy from hmonitor to object included.
– the objects in the hierachy from hmonitor to instrument included.
– the object element (only), the root of all elements.

2.4 Examples
The Figure 3.1 summarizes inheritance and attributes lookup with arrows and colors, which are repro-
duced by the example hereafter:

local element, quadrupole in MAD.element −− kind

local mq = quadrupole ’mq’ { l = 2.1 } −− class

local qf = mq ’qf’ { k1 = 0.05 } −− circuit

local qd = mq ’qd’ { k1 = −0.06 } −− circuit

3. ATTRIBUTES 32

Figure 3.1: Object model and inheritance.

qf

mq
qd

quadrupole

circuits
elements

class kind

Clone: parents are prototypes used to create children (chained)
Read: attributes are sought in the chain of parents (if needed)
Write: attributes are set/overridden only in elements (no lookup)

qf1
qd1
qf2
qd2

local qf1 = qf ’qf1’ {} −− element

... −− more elements

print(qf1.k1) −− display: 0.05 (lookup)

qf.k1 = 0.06 −− update strength of ’qf’ circuit

print(qf1.k1) −− display: 0.06 (lookup)

qf1.k1 = 0.07 −− set strength of ’qf1’ element

print(qf.k1, qf1.k1) −− display: 0.06 0.07 (no lookup)

qf1.k1 = nil −− cancel strength of ’qf1’ element

print(qf1.k1, qf1.l) −− display: 0.06 2.1 (lookup)

print(#element:get_varkeys()) −− display: 33 (may vary)

The element quadrupole provided by the element module is the father of the objects created on its left.
The black arrows show the user defined hierarchy of object created from and linked to the quadrupole.
The main quadrupole mq is a user class representing the physical element, e.g. defining a length, and used
to create two new classes, a focusing quadrupole qf and a defocusing quadrupole qd to model the circuits,
e.g. hold the strength of elements connected in series, and finally the real individual elements qf1, qd1,
qf2 and qd2 that will populate the sequence. A tracking command will request various attributes when
crossing an element, like its length or its strength, leading to lookup of different depths in the hierarchy
along the red arrow. A user may also write or overwrite an attribute at different level in the hierarchy
by accessing directly to an element, as shown by the purple arrows, and mask an attribute of the parent
with the new definitions in the children. The construction shown in this example follows the separation
of concern principle and it is still highly reconfigurable despite that is does not contain any deferred
expression or lambda function.

3 Attributes
New attributes can be added to objects using the dot operator . or the indexing operator [] as for tables.
Attributes with non-string keys are considered as private. Attributes with string keys starting by two
underscores are considered as private and read-only, and must be set during creation:

mq.comment = "Main Arc Quadrupole"

print(qf1.comment) −− displays: Main Arc Quadrupole

qf.__k1 = 0.01 −− error

qf2 = qf { __k1=0.01 } −− ok

The root object provides the following attributes:

name A lambda returning the string __id.

parent A lambda returning a reference to the parent object.

4. METHODS 33

Warning: the following private and read-only attributes are present in all objects as part of the object
model and should never be used, set or changed; breaking this rule would lead to an undefined behavior:

__id A string holding the object’s name set during its creation.

__par A reference holding the object’s parent set during its creation.

__flg A number holding the object’s flags.

__var A table holding the object’s variables, i.e. pairs of (key, value).

__env A table holding the object’s environment.

__index A reference to the object’s parent variables.

4 Methods
New methods can be added to objects but not classes, using the :set_methods(set) method with set

being the set of methods to add as in the following example:

sequence :set_methods {

name_of = name_of,

index_of = index_of,

range_of = range_of,

length_of = length_of,

...

}

where the keys are the names of the added methods and their values must be a callable accepting the
object itself, i.e. self, as their first argument. Classes cannot set new methods.

The root object provides the following methods:

is_final A method () returning a boolean telling if the object is final, i.e. cannot have instance.

is_class A method () returning a boolean telling if the object is a class, i.e. had/has an instance.

is_readonly A method () returning a boolean telling if the object is read-only, i.e. attributes cannot
be changed.

is_instanceOf A method (cls) returning a boolean telling if self is an instance of cls.

set_final A method ([a]) returning self set as final if a ~= false or non-final.

set_readonly A method ([a]) returning self set as read-only if a ~= false or read-write.

same A method ([name]) returning an empty clone of self and named after the string name

(default: nil).

copy A method ([name]) returning a copy of self and named after the string name (default:
nil). The private attributes are not copied, e.g. the final, class or read-only qualifiers are
not copied.

get_varkeys A method ([cls]) returning both, the list of the non-private attributes of self down to
cls (default: self) included, and the set of their keys in the form of pairs (key, key).

4. METHODS 34

get_variables A method (lst, [set], [noeval]) returning a set containing the pairs (key, value)
of the attributes listed in lst. If set is provided, it will be used to store the pairs. If
noveval == true, the functions are not evaluated. The full list of attributes can be
retrieved from get_varkeys. Shortcut getvar.

set_variables A method (set, [override]) returning self with the attributes set to the pairs (key,
value) contained in set. If override ~= true, the read-only attributes (with key start-
ing by "__") cannot be updated.

copy_variables A method (set, [lst], [override]) returning self with the attributes listed in
lst set to the pairs (key, value) contained in set. If lst is not provided, it is replaced
by self.__attr. If set is an object and lst.noeval exists, it is used as the list of
attributes to copy without function evaluation.3 If override ~= true, the read-only
attributes (with key starting by "__") cannot be updated. Shortcut cpyvar.

wrap_variables A method (set, [override]) returning self with the attributes wrapped by the
pairs (key, value) contained in set, where the value must be a callable (a) that takes
the attribute (as a callable) and returns the wrapped value. If override ~= true, the
read-only attributes (with key starting by "__") cannot be updated.

The following example shows how to convert the length l of an RBEND from cord to
arc,4 keeping its strength k0 to be computed on the fly:

local cord2arc in MAD.gmath

local rbend in MAD.element

local printf in MAD.utility

local rb = rbend ’rb’ { angle=pi/10, l=2, k0=\s s.angle/s.l }

printf("l=%.5f, k0=%.5f\n", rb.l, rb.k0) −− l=2.00000, k0=0.15708

rb:wrap_variables { l=\l\s cord2arc(l(),s.angle) } −− RBARC

printf("l=%.5f, k0=%.5f\n", rb.l, rb.k0) −− l=2.00825, k0=0.15643

rb.angle = pi/20 −− update angle

printf("l=%.5f, k0=%.5f\n", rb.l, rb.k0) −− l=2.00206, k0=0.07846

The method converts non-callable attributes into callables automatically to simplify the
user-side, i.e. l() can always be used as a callable whatever its original form was. At
the end, k0 and l are computed values and updating angle affects both as expected.

clear_variables A method () returning self after setting all non-private attributes to nil.

clear_array A method () returning self after setting the array slots to nil, i.e. clear the list part.

clear_all A method () returning self after clearing the object except its private attributes.

set_methods A method (set, [override]) returning self with the methods set to the pairs (key,
value) contained in set, where key must be a string (the method’s name) and value must
be a callable (the method itself). If override ~= true, the read-only methods (with
key starting by "__") cannot be updated. Classes cannot update their methods.

set_metamethods A method (set, [override]) returning self with the attributes set to the pairs
(key, value) contained in set, where key must be a string (the metamethod’s name) and
value must be a callable (the metamethod itself). If override == false, the meta-
methods cannot be updated. Classes cannot update their metamethods.

3This feature is used to setup a command from another command, e.g. track from twiss.
4This approach is safer than the volatile option RBARC of MAD-X.

4. METHODS 35

insert A method ([idx], a) returning self after inserting a at the position idx (default:
#self+1) and shifting up the items at positions idx...

remove A method ([idx]) returning the value removed at the position idx (default: #self) and
shifting down the items at positions idx...

move A method (idx1, idx2, idxto, [dst]) returning the destination object dst (de-
fault: self) after moving the items from self at positions idx1..idx2 to dst at posi-
tions idxto... The destination range can overlap with the source range.

sort A method ([cmp]) returning self after sorting in-place its list part using the ordering
callable cmp(ai, aj) (default: "<"), which must define a partial order over the items.
The sorting algorithm is not stable.

bsearch A method (a, [cmp], [low], [high]) returning the lowest index idx in the range
specified by low..high (default: 1..#self) from the ordered list of self that com-
pares true with item a using the callable cmp(a, self[idx]) (default: "<=" for as-
cending, ">=" for descending), or high+1. In the presence of multiple equal items, "<="
(resp. ">=") will return the index of the first equal item while "<" (resp. ">") the index
next to the last equal item for ascending (resp. descending) order.5

lsearch A method (a, [cmp], [low], [high]) returning the lowest index idx in the range
specified by low..high (default: 1..#self) from the list of self that compares true
with item a using the callable cmp(a, self[idx]) (default: "=="), or high+1. In the
presence of multiple equal items in an ordered list, "<=" (resp. ">=") will return the
index of the first equal item while "<" (resp. ">") the index next to the last equal item
for ascending (resp. descending) order.5

get_flags A method () returning the flags of self. The flags are not inherited nor copied.

set_flags A method (flgs) returning self after setting the flags determined by flgs.

clear_flags A method (flgs) returning self after clearing the flags determined by flgs.

test_flags A method (flgs) returning a boolean telling if all the flags determined by flgs are set.

open_env A method ([ctx]) returning self after opening an environment, i.e. a global scope,
using self as the context for ctx (default: 1). The argument ctx must be either a
function or a number defining a call level > 1.

close_env A method () returning self after closing the environment linked to it. Closing an
environment twice is safe.

load_env A method (loader) returning self after calling the loader, i.e. a compiled chunk,
using self as its environment. If the loader is a string, it is interpreted as the filename
of a script to load, see functions load and loadfile in Lua 5.2 §6.1 for details.

dump_env A method () returning self after dumping its content on the terminal in the rought form
of pairs (key, value), including content of table and object value, useful for debugging
environments.

is_open_env A method () returning a boolean telling if self is an open environment.

5bsearch and lsearch stand for binary (ordered) search and linear (unordered) search respectively.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

5. METAMETHODS 36

raw_len A method () returning the number of items in the list part of the object. This method
should not be confused with the native function rawlen.

raw_get A method (key) returning the value of the attribute key without lambda evaluation
nor inheritance lookup. This method should not be confused with the native function
rawget.

raw_set A method (key, val) setting the attribute key to the value val, bypassing all guards of
the object model. This method should not be confused with the native function rawset.
Warning: use this dangerous method at your own risk!

var_get A method (key) returning the value of the attribute key without lambda evaluation.

var_val A method (key, val) returning the value val of the attribute key with lambda eval-
uation. This method is the complementary of var_get, i.e. __index ≡ var_val ◦
var_get.

dumpobj A method ([fname], [cls], [patt], [noeval]) return self after dumping its non-
private attributes in file fname (default: stdout) in a hierarchical form down to cls. If
the string patt is provided, it filters the names of the attributes to dump. If fname == ’−’,
the dump is returned as a string in place of self. The logical noeval prevents the eval-
uatation the deferred expressions and reports the functions addresses instead. In the
output, self and its parents are displayed indented according to their inheritance level,
and preceeded by a + sign. The attributes overridden through the inheritance are tagged
with n * signs, where n corresponds to the number of overrides since the first definition.

5 Metamethods
New metamethods can be added to objects but not classes, using the :set_metamethods(set) method
with set being the set of metamethods to add as in the following example:

sequence :set_metamethods {
__len = len_mm,
__index = index_mm,
__newindex = newindex_mm,

...

}

where the keys are the names of the added metamethods and their values must be callable accepting the
object itself, i.e. self, as their first argument. Classes cannot set new metamethods.

The root object provides the following metamethods:

__init A metamethod () called to finalize self before returning from the constructor.

__same A metamethod () similar to the method same.

__copy A metamethod () similar to the method copy.

__len A metamethod () called by the length operator # to return the size of the list part of
self.

__call A metamethod ([name], tbl) called by the call operator () to return an instance of
self created from name and tbl, i.e. using self as a constructor.

6. FLAGS 37

__index A metamethod (key) called by the indexing operator [key] to return the value of an
attribute determined by key after having performed lambda evaluation and inheritance
lookup.

__newindex A metamethod (key, val) called by the assignment operator [key]=val to create new
attributes for the pairs (key, value).

__pairs A metamethod () called by the pairs function to return an iterator over the non-private
attributes of self.

__ipairs A metamethod () called by the ipairs function to return an iterator over the list part of
self.

__tostring A metamethod () called by the tostring function to return a string describing suc-
cinctly self.

The following attributes are stored with metamethods in the metatable, but have different purposes:

__obj A unique private reference that characterizes objects.

__metatable A reference to the metatable itself protecting against modifications.

6 Flags
The object model uses flags to qualify objects, like class-object, final-object and readonly-object. The
difference with boolean attributes is that flags are not inherited nor copied. The flags of objects are
managed by the methods :get_flags, :set_flags, :clear_flags and :test_flags. Methods like
:is_class, :is_final and :is_readonly are roughly equivalent to call the method :test_flags

with the corresponding (private) flag as argument. Note that functions from the typeid module that
check for types or kinds, like is_object or is_beam, never rely on flags because types and kinds are
not qualifers.

From the technical point of view, flags are encoded into a 32-bit integer and the object model uses the
protected bits 29-31, hence bits 0-28 are free of use. Object flags can be used and extended by other
modules introducing their own flags, like the element module that relies on bits 0-4 and used by many
commands. In practice, the bit index does not need to be known and should not be used directly but
through its name to abstract its value.

7 Environments
The object model allows to transform an object into an environment; in other words, a global work-
space for a given context, i.e. scope. Objects-as-environments are managed by the methods open_env,
close_env, load_env, dump_env and is_open_env. Things defined in this workspace will be stored
in the object, and accessible from outside using the standard ways to access object attributes:

local object in MAD

local one = 1

local obj = object { a:=one } −− obj with ’a’ defined

−− local a = 1 −− see explication below

obj:open_env() −− open environment

b = 2 −− obj.b defined

c =\ −> a..":"..b −− obj.c defined

obj:close_env() −− close environment

7. ENVIRONMENTS 38

print(obj.a, obj.b, obj.c) −− display: 1 2 1:2

one = 3

print(obj.a, obj.b, obj.c) −− display: 3 2 3:2

obj.a = 4

print(obj.a, obj.b, obj.c) −− display: 4 2 4:2

Uncommenting the line local a = 1 would change the last displayed column to 1:2 for the three prints
because the lambda defined for obj.c would capture the local a as it would exist in its scope. As seen
hereabove, once the environment is closed, the object still holds the variables as attributes.

The MADX environment is an object that relies on this powerful feature to load MAD-X lattices, their
settings and their "business logic", and provides functions, constants and elements to mimic the behavior
of the global workspace of MAD-X to some extend:

MADX:open_env()

mq_k1 = 0.01 −− mq.k1 is not a valid identifier!

MQ = QUADRUPOLE {l=1, k1:=MQ_K1} −− MADX environment is case insensitive

MADX:close_env() −− but not the attributes of objects!

local mq in MADX

print(mq.k1) −− display: 0.01

MADX.MQ_K1 = 0.02

print(mq.k1) −− display: 0.02

Note that MAD-X workspace is case insensitive and everything is "global" (no scope, namespaces),
hence the quadrupole element has to be directly available inside the MADX environment. Moreover,
the MADX object adds the method load to extend load_env and ease the conversion of MAD-X lattices.
For more details see chapter 9.

Chapter 4. Beams

The beam object is the root object of beams that store information relative to particles and particle beams.
It also provides a simple interface to the particles and nuclei database.

The beam module extends the typeid module with the is_beam function, which returns true if its
argument is a beam object, false otherwise.

1 Attributes
The beam object provides the following attributes:

particle A string specifying the name of the particle. (default: "positron").

mass A number specifying the energy-mass of the particle [GeV]. (default: emass).

charge A number specifying the charge of the particle in [q] unit of qelect.1 (default: 1).

spin A number specifying the spin of the particle. (default: 0).

emrad A lambda returning the electromagnetic radius of the particle [m],
emrad = krad_GeV*charge^2/mass where krad_GeV = 10−9(4πε0)

−1q.

aphot A lambda returning the average number of photon emitted per bending unit,
aphot = kpht_GeV*charge^2*betgam where kpht_GeV = 5

2
√
3
krad_GeV (~c)−1.

energy A number specifying the particle energy [GeV]. (default: 1).

pc A lambda returning the particle momentum times the speed of light [GeV],
pc = (energy2 − mass2)

1
2 .

beta A lambda returning the particle relativistic β = v
c ,

beta = (1 − (mass/energy)2)
1
2 .

gamma A lambda returning the particle Lorentz factor γ = (1− β2)−
1
2 ,

gamma = energy/mass.

betgam A lambda returning the product βγ,
betgam = (gamma2 − 1)

1
2 .

pc2 A lambda returning pc2, avoiding the square root.

beta2 A lambda returning beta2, avoiding the square root.

betgam2 A lambda returning betgam2, avoiding the square root.

brho A lambda returning the magnetic rigidity [T.m],
brho = GeV_c * pc/|charge| where GeV_c = 109/c.

ex A number specifying the horizontal emittance εx [m]. (default: 1).

ey A number specifying the vertical emittance εy [m]. (default: 1).

et A number specifying the longitudinal emittance εt [m]. (default: 1e−3).

1The qelect value is defined in the constant module.

39

2. METHODS 40

exn A lambda returning the normalized horizontal emittance [m],
exn = ex * betgam.

eyn A lambda returning the normalized vertical emittance [m],
eyn = ey * betgam.

etn A lambda returning the normalized longitudinal emittance [m],
etn = et * betgam.

nbunch A number specifying the number of particle bunches in the machine. (default: 0).

npart A number specifying the number of particles per bunch. (default: 0).

sigt A number specifying the bunch length in cσt. (default: 1).

sige A number specifying the relative energy spread in σE/E [GeV]. (default: 1e−3).

The beam object also implements a special protect-and-update mechanism for its attributes to ensure
consistency and precedence between the physical quantities stored internally:

– The following attributes are read-only, i.e. writing to them triggers an error:

mass, charge, spin, emrad, aphot.

– The following attributes are read-write, i.e. hold values, with their accepted numerical ranges:

particle, energy >mass,
ex > 0, ey > 0, et > 0,
nbunch > 0, npart > 0, sigt > 0, sige > 0.

– The following attributes are read-update, i.e. setting these attributes update the energy, with their
accepted numerical ranges:

pc > 0, 0.9 > beta > 0, gamma > 1, betgam > 0.1, brho > 0,
pc2, beta2, betgam2.

– The following attributes are read-update, i.e. setting these attributes update the emittances ex, ey,
and et repectively, with their accepted numerical ranges:

exn > 0, eyn > 0, etn > 0.

2 Methods
The beam object provides the following methods:

new_particle A method (particle, mass, charge, [spin]) creating new particles or nuclei and
store them in the particles database. The arguments specify in order the new particle’s
name, energy-mass [GeV], charge [q], and spin (default: 0). These arguments can also
be grouped into a table with same attribute names as the argument names and passed as
the solely argument.

set_variables A method (set) returning self with the attributes set to the pairs (key, value) con-
tained in set. This method overrides the original one to implement the special protect-
and-update mechanism, but the order of the updates is undefined. It also creates new
particle on-the-fly if the mass and the charge are defined, and then select it. Shortcut
setvar.

showdb A method ([file]) displaying the content of the particles database to file (default:
io.stdout).

3. METAMETHODS 41

3 Metamethods
The beam object provides the following metamethods:

__init A metamethod () returning self after having processed the attributes with the special
protect-and-update mechanism, where the order of the updates is undefined. It also
creates new particle on-the-fly if the mass and the charge are defined, and then select it.

__newindex A metamethod (key, val) called by the assignment operator [key]=val to create new
attributes for the pairs (key, value) or to update the underlying physical quantity of the
beam objects.

The following attribute is stored with metamethods in the metatable, but has different purpose:

__beam A unique private reference that characterizes beams.

4 Particles database
The beam object manages the particles database, which is shared by all beam instances. The default set
of supported particles is:

electron, positron, proton, antiproton, neutron, antineutron, ion, muon,

antimuon, deuteron, antideuteron, negmuon (=muon), posmuon (=antimuon).

New particles can be added to the database, either explicitly using the new_particle method, or by
creating or updating a beam object and specifying all the attributes of a particle, i.e. particle’s name,
charge, mass, and (optional) spin:

local beam in MAD

local nmass, pmass, mumass in MAD.constant

−− create a new particle

beam:new_particle{ particle=’mymuon’, mass=mumass, charge=−1, spin=1/2 }

−− create a new beam and a new nucleus

local pbbeam = beam { particle=’pb208’, mass=82*pmass+126*nmass, charge=82 }

The particles database can be displayed with the showdb method at any time from any beam:

beam:showdb() −− check that both, mymuon and pb208 are in the database.

5 Particle charges
The physics of MAD-NG is aware of particle charges. To enable the compatibility with codes like MAD-
X that ignores the particle charges, the global option nocharge can be used to control the behavior of
created beams as shown by the following example:

local beam, option in MAD

local beam1 = beam { particle="electron" } −− beam with negative charge

print(beam1.charge, option.nocharge) −− display: −1 false

option.nocharge = true −− disable particle charges

local beam2 = beam { particle="electron" } −− beam with negative charge

print(beam2.charge, option.nocharge) −− display: 1 true

6. EXAMPLES 42

−− beam1 was created before nocharge activation...

print(beam1.charge, option.nocharge) −− display: −1 true

This approach ensures consistency of beams behavior during their entire lifetime.2

6 Examples
The following code snippet creates the LHC lead beams made of bare nuclei 208Pb82+:

local beam in MAD

local lhcb1, lhcb2 in MADX

local nmass, pmass, amass in MAD.constant

local pbmass = 82*pmass+126*nmass

−− attach a new beam with a new particle to lhcb1 and lhcb2.

lhc1.beam = beam ’Pb208’ { particle=’pb208’, mass=pbmass, charge=82 }

lhc2.beam = lhc1.beam −− let sequences share the same beam...

−− print Pb208 nuclei energy−mass in GeV and unified atomic mass.

print(lhcb1.beam.mass, lhcb1.beam.mass/amass)

2The option rbarc in MAD-X is too volatile and does not ensure such consistency...

Chapter 5. Beta0 Blocks

TODO

The beta0 object is the root object of beta0 blocks that store information relative to the phase space at
given positions, e.g. initial conditions, Poincaré section.

The beta0 module extends the typeid module with the is_beta0 function, which returns true if its
argument is a beta0 object, false otherwise.

1 Attributes
The beta0 object provides the following attributes:

particle A string specifying the name of the particle. (default: "positron").

2 Methods
The beta0 object provides the following methods:

showdb A method ([file]) displaying the content of the particles database to file (default:
io.stdout).

3 Metamethods
The beta0 object provides the following metamethods:

__init A metamethod () returning self after having processed the attributes with the special
protect-and-update mechanism, where the order of the updates is undefined. It also
creates new particle on-the-fly if the mass and the charge are defined, and then select it.

The following attribute is stored with metamethods in the metatable, but has different purpose:

__beta0 A unique private reference that characterizes beta0 blocks.

4 Examples

43

Chapter 6. Elements

The element object is the root object of all elements used to model particle accelerators, including
sequences and drifts. It provides most default values inherited by all elements.

The element module extends the typeid module with the is_element function, which returns true if
its argument is an element object, false otherwise.

1 Taxonomy
The classes defined by the element module are organized according to the kinds and the roles of their
instances. The classes defining the kinds are:

thin The thin elements have zero-length and their physics does not depend on it, i.e. the
attribute l is discarded or forced to zero in the physics.

thick The thick elements have a length and their physics depends on it. Elements like sbend,
rbend, quadrupole, solenoid, and elseparator trigger a runtime error if they have
zero-length. Other thick elements will accept to have zero-length for compatibility with
MAD-X1, but their physics will have to be adjusted.2

drift The drift elements have a length with a drift-like physics if l > minlen3 otherwise
they are discarded or ignored. Any space between elements with a length l > minlen

are represented by an implicit drift created on need by the s-iterator of sequences and
discarded afterward.

patch The patch elements have zero-length and the purpose of their physics is to change the
reference frame.

extrn The extern elements are never part of sequences. If they are present in a sequence defin-
ition, they are expanded and replaced by their content, i.e. stay external to the lattice.

specl The special elements have special roles like marking places (i.e. maker) or branching
sequences (i.e. slink).

These classes are not supposed to be used directly, except for extending the hierarchy defined by the
element module and schematically reproduced hereafter to help users understanding:

thin_element = element ’thin_element’ { is_thin = true }

thick_element = element ’thick_element’ { is_thick = true }

drift_element = element ’drift_element’ { is_drift = true }

patch_element = element ’patch_element’ { is_patch = true }

extrn_element = element ’extrn_element’ { is_extern = true }

specl_element = element ’specl_element’ { is_special = true }

sequence = extrn_element ’sequence’ { }

assembly = extrn_element ’assembly’ { }

bline = extrn_element ’bline’ { }

1In MAD-X, zero-length sextupole and octupole are valid but may have surprising effects...
2E.g. zero-length sextupole must define their strength with knl[3] instead of k2 to have the expected effect.
3By default minlen= 10−12m.

44

1. TAXONOMY 45

marker = specl_element ’marker’ { }

slink = specl_element ’slink’ { }

drift = drift_element ’drift’ { }

collimator = drift_element ’collimator’ { }

instrument = drift_element ’instrument’ { }

placeholder = drift_element ’placeholder’ { }

sbend = thick_element ’sbend’ { }

rbend = thick_element ’rbend’ { }

quadrupole = thick_element ’quadrupole’ { }

sextupole = thick_element ’sextupole’ { }

octupole = thick_element ’octupole’ { }

decapole = thick_element ’decapole’ { }

dodecapole = thick_element ’dodecapole’ { }

solenoid = thick_element ’solenoid’ { }

tkicker = thick_element ’tkicker’ { }

wiggler = thick_element ’wiggler’ { }

elseparator = thick_element ’elseparator’ { }

rfcavity = thick_element ’rfcavity’ { }

genmap = thick_element ’genmap’ { }

beambeam = thin_element ’beambeam’ { }

multipole = thin_element ’multipole’ { }

xrotation = patch_element ’xrotation’ { }

yrotation = patch_element ’yrotation’ { }

srotation = patch_element ’srotation’ { }

translate = patch_element ’translate’ { }

changeref = patch_element ’changeref’ { }

changedir = patch_element ’changedir’ { }

changenrj = patch_element ’changenrj’ { }

−− specializations

rfmultipole = rfcavity ’rfmultipole’ { }

crabcavity = rfmultipole ’crabcavity’ { }

monitor = instrument ’monitor’ { }

hmonitor = monitor ’hmonitor’ { }

vmonitor = monitor ’vmonitor’ { }

kicker = tkicker ’kicker’ { }

hkicker = kicker ’hkicker’ { }

vkicker = kicker ’vkicker’ { }

All the classes above, including element, define the attributes kind = name and is_name = true

where name correspond to the class name. These attributes help to identify the kind and the role of
an element as shown in the following code excerpt:

local drift, hmonitor, sequence in MAD.element

local dft = drift {}

2. ATTRIBUTES 46

local bpm = hmonitor {}

local seq = sequence {}

print(dft.kind) −− display: drift

print(dft.is_drift) −− display: true

print(dft.is_drift_element) −− display: true

print(bpm.kind) −− display: hmonitor

print(bpm.is_hmonitor) −− display: true

print(bpm.is_monitor) −− display: true

print(bpm.is_instrument) −− display: true

print(bpm.is_drift_element) −− display: true

print(bpm.is_element) −− display: true

print(bpm.is_drift) −− display: true

print(bpm.is_thick_element) −− display: nil (not defined = false)

print(seq.kind) −− display: sequence

print(seq.is_element) −− display: true

print(seq.is_extrn_element) −− display: true

print(seq.is_thick_element) −− display: nil (not defined = false)

2 Attributes
The element object provides the following attributes:

l A number specifying the physical length of the element on the design orbit [m]. (de-
fault: 0).

lrad A number specifying the field length of the element on the design orbit considered by
the radiation [m]. (default: lrad = \s −> s.l).

angle A number specifying the bending angle α of the element [rad]. A positive angle repres-
ents a bend to the right, i.e. a −y-rotation towards negative x values. (default: 0).

tilt A number specifying the physical tilt of the element [rad]. All the physical quantities
defined by the element are in the tilted frame, except misalign that comes first when
tracking through an element, see the track command for details. (default: 0).

model A string specifying the integration model "DKD" or "TKT" to use when tracking through
the element and overriding the command attribute, see the track command for details.
(default: cmd.model).

method A number specifying the integration order 2, 4, 6, or 8 to use when tracking through
the element and overriding the command attribute, see the track command for details.
(default: cmd.method).

nslice A number specifying the number of slices or a list of increasing relative positions or a
callable (elm, mflw, lw) returning one of the two previous kind of positions specific-
ation to use when tracking through the element and overriding the command attribute,
see the survey or the track commands for details. (default: cmd.nslice).

refpos A string holding one of "entry", "centre" or "exit", or a number specifying a posi-
tion in [m] from the start of the element, all of them resulting in an offset to substract to
the at attribute to find the s-position of the element entry when inserted in a sequence,
see elements positions for details. (default: nil ≡ seq.refer).

3. METHODS 47

aperture A mappable specifying aperture attributes, see Aperture for details.
(default: {kind=’circle’, 1}).

apertype A string specifying the aperture type, see Aperture for details.
(default: \s −> s.aperture.kind or ’circle’).4

misalign A mappable specifying misalignment attributes, see Misalignment for details.
(default: nil).

The thick_element object adds the following multipolar and fringe fields attributes:

knl, ksl A list specifying respectively the multipolar and skew integrated strengths of the ele-
ment [m−i+1]. (default: {}).

dknl, dksl A list specifying respectively the multipolar and skew integrated strengths errors of the
element [m−i+1]. (default: {}).

e1, e2 A number specifying respectively the horizontal angle of the pole faces at entry and exit
of the element [rad]. A positive angle goes toward inside the element, see Figures 6.1
and 6.2. (default: 0).

h1, h2 A number specifying respectively the horizontal curvature of the pole faces at entry
and exit of the element [m−1]. A positive curvature goes toward inside the element.
(default: 0).

hgap A number specifying half of the vertical gap at the center of the pole faces of the element
[m]. (default: 0).

fint A number specifying the fringe field integral at entrance of the element. (default: 0).

fintx A number specifying the fringe field integral at exit of the element. (default: fint).

fringe A number specifying the bitmask to activate fringe fields of the element, see Flags for
details. (default: 0).

fringemax A number specifying the maximum order for multipolar fringe fields of the element.
(default: 2).

kill_ent_fringe A logical specifying to kill the entry fringe fields of the element. (default: false).

kill_exi_fringe A logical specifying to kill the entry fringe fields of the element. (default: false).

f1, f2 A number specifying quadrupolar fringe field first and second parameter of SAD. (de-
fault: 0).

3 Methods
The element object provides the following methods:

select A method ([flg]) to select the element for the flags flg (default: selected).

deselect A method ([flg]) to deselect the element for the flags flg (default: selected).

is_selected A method ([flg]) to test the element for the flags flg (default: selected).

4This attribute was introduced to ease the translation of MAD-X sequences and may disappear in some future.

4. METAMETHODS 48

is_disabled A method () to test if the element is disabled, which is equivalent to call the method
is_selected(disabled).

is_observed A method () to test if the element is observed, which is equivalent to call the method
is_selected(observed).

is_implicit A method () to test if the element is implicit, which is equivalent to call the method
is_selected(implicit).

The drift_element and thick_element objects provide the following extra methods, see sub-elements
for details about the sat attribute:

index_sat A method (sat, [cmp]) returning the lowest index idx (starting from 1) of the first
sub-element with a relative position from the element entry that compares true with the
number sat using the optional callable cmp(sat, self[idx].sat) (default: "=="), or
#self+1. In the presence of multiple equal positions, "<=" (resp. ">=") will return the
lowest index of the position while "<" (resp. ">") the lowest index next to the position
for ascending (resp. descending) order.

insert_sat A method (elm, [cmp]) returning the element after inserting the sub-element elm at
the index determined by :index_sat(elm.sat, [cmp]) using the optional callable cmp
(default: "<").

replace_sat A method (elm) returning the replaced sub-element found at the index determined by
:index_sat(elm.sat) by the new sub-element elm, or nil.

remove_sat A method (sat) returning the removed sub-element found at the index determined by
:index_sat(sat), or nil.

4 Metamethods
The element object provides the following metamethods:

__len A metamethod () overloading the length operator # to return the number of subelements
in the list part of the element.

__add A metamethod (obj) overloading the binary operator + to build a bline object from the
juxtaposition of two elements.

__mul A metamethod (n) overloading the binary operator * to build a bline object from the
repetition of an element n times, i.e. one of the two operands must be a number.

__unm A metamethod (n) overloading the unary operator − to build a bline object from the
turning of an element, i.e. reflect the element.

__tostring A metamethod () returning a string built from the element information, e.g. print(moni-
tor ’bpm’ {}) display the string ":monitor: ’bpm’ memory-address".

The operators overloading of elements allows to unify sequence and beamline definitions in a consistent
and simple way, noting that sequence and bline are (external) elements too.

The following attribute is stored with metamethods in the metatable, but has different purpose:

__elem A unique private reference that characterizes elements.

5. ELEMENTS 49

5 Elements
Some elements define new attributes or override the default values provided by the root object element.
The following subsections describe the elements supported by MAD-NG.

5.1 SBend
The sbend element is a sector bending magnet with a curved reference system as shown in Figure 6.1,
and defines or overrides the following attributes:

k0 A number specifying the dipolar strength of the element [m−1].
(default: k0 = \s −> s.angle/s.l).5,6

k0s A number specifying the dipolar skew strength of the element [m−1]. (default: 0).

k1, k1s A number specifying respectively the quadrupolar and skew strengths of the element
[m−2]. (default: 0).

k2, k2s A number specifying respectively the sextupolar and skew strengths of the element
[m−3]. (default: 0).

fringe Set to flag fringe.bend to activate the fringe fields by default, see Flags for details.

Figure 6.1: Reference system for a sector bending magnet.

y1 y2s1 s2

ρ

x1

ρ

x2

α

r

l
e1 e2

5.2 RBend
The rbend element is a rectangular bending magnet with a straight reference system as shown in Fig-
ure 6.2, and defines or overrides the following attributes:

k0 A number specifying the dipolar strength of the element [m−1].
(default: k0 = \s −> s.angle/s.l).5,6

5By default bending magnets are ideal bends, that is angle = k0*l.
6For compatibility with MAD-X.

5. ELEMENTS 50

k0s A number specifying the dipolar skew strength of the element [m−1]. (default: 0).

k1, k1s A number specifying respectively the quadrupolar and skew strengths of the element
[m−2]. (default: 0).

k2, k2s A number specifying respectively the sextupolar and skew strengths of the element
[m−3]. (default: 0).

fringe Set to flag fringe.bend to activate the fringe fields by default, see Flags for details.

true_rbend A logical specifying if this rbend element behaves like (false) a sbend element with
parallel pole faces, i.e. e1 = e2 = α/2 in Figure 6.1, or like (true) a rectangular bending
magnet with a straight reference system as shown in Figure 6.2. (default: false).6

Figure 6.2: Reference system for a rectangular bending magnet.

y1 y2s1 s2

ρ

x1

ρ

x2

α

x

l

e1 e2

5.3 Quadrupole
The quadrupole element is a straight focusing element and defines the following attributes:

k0, k0s A number specifying respectively the dipolar and skew strengths of the element [m−1].
(default: 0).

k1, k1s A number specifying respectively the quadrupolar and skew strengths of the element
[m−2]. (default: 0).

k2, k2s A number specifying respectively the sextupolar and skew strengths of the element
[m−3]. (default: 0).

5.4 Sextupole
The sextupole element is a straight element and defines the following attributes:

k2, k2s A number specifying respectively the sextupolar and skew strengths of the element
[m−3]. (default: 0).

5. ELEMENTS 51

5.5 Octupole
The octupole element is a straight element and defines the following attributes:

k3, k3s A number specifying respectively the octupolar and skew strengths of the element [m−4].
(default: 0).

5.6 Decapole
The decapole element is a straight element and defines the following attributes:

k4, k4s A number specifying respectively the decapolar and skew strength of the element [m−5].
(default: 0).

5.7 Dodecapole
The dodecapole element is a straight element and defines the following attributes:

k5, k5s A number specifying respectively the dodecapolar and skew strength of the element
[m−6]. (default: 0).

5.8 Solenoid
The solenoid element defines the following attributes:

ks, ksi A number specifying respectively the strength [rad/m] and the integrated strength [rad]
of the element. A positive value points toward positive s. (default: 0).

5.9 Multipole
The multipole element is a thin element and defines the following attributes:

knl, ksl A list specifying respectively the multipolar and skew integrated strengths of the element
[m−i+1]. (default: {}).

dknl, dksl A list specifying respectively the multipolar and skew integrated strengths errors of the
element [m−i+1]. (default: {}).

5.10 TKicker
The tkicker element is the root object of kickers and defines or overrides the following attributes:

hkick A number specifying the horizontal strength of the element [m−1]. By convention, a
kicker with a positive horizontal strength kicks in the direction of the reference orbit,
e.g. hkick ≡ −knl[1]. (default: 0).

vkick A number specifying the vertical strength of the element [m−1]. By convention, a kicker
with a positive vertical strength kicks toward the reference orbit, e.g. vkick ≡ ksl[1].
(default: 0).

method Set to 2 if ptcmodel is not set to enforce pure momentum kick and avoid dipolar strength
integration that would introduce dispersion.

5. ELEMENTS 52

5.11 Kicker, HKicker, VKicker
The kicker element inheriting from the tkicker element, is the root object of kickers involved in the
orbit correction and defines the following attributes:

chkick, cvkick A number specifying respectively the horizontal and vertical correction strength of
the element set by the correct command [m−1]. (default: 0).

The hkicker (horizontal kicker) and vkicker (vertical kicker) elements define the following attribute:

kick A number specifying the strength of the element in its main direction [m−1]. (default: 0).

5.12 Monitor, HMonitor, VMonitor
The monitor element is the root object of monitors involved in the orbit correction and defines the
following attributes:

mredx, mredy A number specifying respectively the readout x,y-offset error of the element [m]. The
offset is added to the beam position during orbit correction (after scaling). (default: 0).

mresx, mresy A number specifying respectively the readout x,y-scaling error of the element. The scale
factor multiplies the beam position by 1+mres (before offset) during orbit correction.7

(default: 0).

The hmonitor (horizontal monitor) and vmonitor (vertical monitor) elements are specialisations inher-
iting from the monitor element.

5.13 RFCavity
The rfcavity element defines the following attributes:

volt A number specifying the peak RF voltage of the element [MV]. (default: 0).

freq A number specifying a non-zero RF frequency of the element [MHz]. (default: 0).

lag A number specifying the RF phase lag of the element in unit of 2π. (default: 0).

harmon A number specifying the harmonic number of the element if freq is zero. (default: 0).

n_bessel A number specifying the transverse focussing effects order of the element. (default: 0).

totalpath A logical specifying if the totalpath must be used in the element. (default: true).

5.14 RFMultipole
The rfmultipole element defines the following attributes:

pnl, psl A list specifying respectively the multipolar and skew phases of the element [rad]. (de-
fault: {}).

dpnl, dpsl A list specifying respectively the multipolar and skew phases errors of the element [rad].
(default: {}).

7This definition comes from MAD-X default zeroed values such that undefined attribute gives a scale of 1.

5. ELEMENTS 53

5.15 ElSeparator
The elseparator element defines the following attributes:

ex, ey A number specifying respectively the electric field x,y-strength of the element [MV/m].
(default: 0).

exl, eyl A number specifying respectively the integrated electric field x,y-strength of the element
[MV]. (default: 0).

5.16 Wiggler
The wiggler element defines the following attributes: NYI, TBD

5.17 BeamBeam
The beambeam element defines the following attributes: NYI, TBD

5.18 GenMap
The genmap element defines the following attributes:8

damap A damap used for thick integration.

update A callable (elm, mflw, lw) invoked before each step of thick integration to update
the damap. (default: nil)

nslice A number specifying the number of slices or a list of increasing relative positions or a
callable (elm, mflw, lw) returning one of the two previous kind of positions specific-
ation to use when tracking through the element and overriding the command attribute,
see the survey or the track commands for details. (default: 1).

5.19 SLink
The slink element defines the following attributes:9

sequence A sequence to switch to right after exiting the element. (default: nil)

range A range specifying the span over the sequence to switch to, as expected by the sequence
method :siter. (default: nil).

nturn A number specifying the number of turn to track the sequence to switch to, as expected
by the sequence method :siter. (default: nil).

dir A number specifying the s-direction of the tracking of the sequence to switch to, as
expected by the sequence method :siter. (default: nil).

update A callable (elm, mflw) invoked before retrieving the other attributes when entering
the element. (default: nil)

8This element is a generalization of the matrix element of MAD-X, to use with care!
9This element allows to switch between sequences during tracking, kind of if-then-else for tracking.

6. FLAGS 54

5.20 Translate
The translate element is a patch element and defines the following attributes:

dx, dy, ds A number specifying respectively x,y,s-translation of the reference frame [m]. (de-
fault: 0)

5.21 XRotation, YRotation, SRotation
The xrotation (rotation around x-axis), yrotation (rotation around y-axis) and srotation (rotation
around s-axis) elements are patches element and define the following attribute:

angle A number specifying the rotation angle around the axis of the element [rad]. (default: 0).

5.22 ChangeRef
The changeref element is a patch element and defines the following attributes:

dx, dy, ds A number specifying respectively x,y,s-translation of the reference frame [m]. (de-
fault: 0)

dtheta, dphi, dpsi A number specifying respectively y,−x,s-rotation of the reference frame applied
in this order after any translation [rad]. (default: 0)

5.23 ChangeDir
The changedir element is a patch element that reverses the direction of the sequence during the tracking.

5.24 ChangeNrj
The changenrj element is a patch element and defines the following attributes:

dnrj A number specifying the change by δE of the reference beam energy [GeV]. The mo-
menta of the particles or damaps belonging to the reference beam (i.e. not owning a
beam) are updated, while other particles or damaps owning their beam are ignored. (de-
fault: 0)

6 Flags
The element module exposes the following object flags through MAD.element.flags to use in con-
junction with the methods select and deselect:10

none All bits zero.

selected Set if the element has been selected.

disabled Set if the element has been disabled, e.g. for orbit correction.

observed Set if the element has been selected for observation, e.g. for output to TFS table. The
$end markers are selected for observation by default, and commands with the observe

attribute set to 0 discard this flag and consider all elements as selected for observation.

10Remember that flags are not inherited nor copied as they are qualifying the object itself.

7. FRINGE FIELDS 55

implicit Set if the element is implicit, like the temporary implicit drifts created on-the-fly by the
sequence s-iterator with indexes at half integers. This flag is used by commands with
the implicit attribute.

playout Set if the element angle must be used by layout plot. This flag is useful to plot multiple
sequence layouts around interaction points, like lhcb1 and lhcb2 around IP1 and IP5.

7 Fringe fields
The element module exposes the following flags through MAD.element.flags.fringe to control the
elements fringe fields through their attribute fringe, or to restrict the activated fringe fields with the
commands attribute fringe:11

none All bits zero.

bend Control the element fringe fields for bending fields.

mult Control the element fringe fields for multipolar fields up to fringemax order.

rfcav Control the element fringe fields for rfcavity fields.

qsad Control the element fringe fields for multipolar fields with extra terms for quadrupolar
fields for compatibility with SAD.

comb Control the element fringe fields for combined bending and multipolar fields.

combqs Control the element fringe fields for combined bending and multipolar fields with extra
terms for quadrupolar fields for compatibility with SAD.

The element thick_element provides a dozen of attributes to parametrize the aforementionned fringe
fields. Note that in some future, part of these attributes may be grouped into a mappable to ensure a
better consistency of their parametrization.

8 Sub-elements
An element can have thin or thick sub-elements stored in its list part, hence the length operator # returns
the number of them. The attribute sat of sub-elements, i.e. read sub-at, is interpreted as their relative
position from the entry of their enclosing main element, that is a fractional of its length. The positions
of the sub-elements can be made absolute by dividing their sat attribute by the length of their main ele-
ment using lambda expressions. The sub-elements are only considered and valid in the drift_element
and thick_element kinds that implement the methods :index_sat, :insert_sat, :remove_sat, and
:replace_sat to manage sub-elements from their sat attribute. The sequence method :install up-
dates the sat attribute of the elements installed as sub-elements if the logical elements.subelem of
the packed form is enabled, i.e. when the s-position determined by the at, from and refpos attributes
falls inside a non-zero length element already installed in the sequence that is not an implicit drift. The
physics of thick sub-elements will shield the physics of their enclosing main element along their length,
unless they combine their attributes with those of their main element using lambda expressions to select
some combined function physics.

11Those flags are not object flags, but fringe fields flags.

9. APERTURE 56

9 Aperture
All the apertures are mappable defined by the following attributes in the tilted frame of an element, see
the track command for details:

kind A string specifying the aperture shape. (no default).

tilt A number specifying the tilt angle of the aperture [rad]. (default: 0).

xoff, yoff A number specifying the transverse x, y-offset of the aperture [m]. (default: 0).

maper A mappable specifying a smaller aperture12 than the polygon aperture to use before
checking the polygon itself to speed up the test. The attributes tilt, xoff and yoff are
ignored and superseded by the ones of the polygon aperture. (default: nil).

The supported aperture shapes are listed hereafter. The parameters defining the shapes are expected to
be in the list part of the apertures and defines the top-right sector shape, except for the polygon:

square A square shape with one parameter defining the side half-length. It is the default aperture
check with limits set to 1.

rectangle A rectangular shape with two parameters defining the x,y-half lengths (default: 1 [m]).

circle A circular shape with one parameter defining the radius.

ellipse A elliptical shape with two parameters defining the x,y-radii. (default: 1 [m]).

rectcircle A rectangular shape intersected with a circular shape with three parameters defining the
x,y-half lengths and the radius. (default: 1 [m]).

rectellipse A rectangular shape intersected with an elliptical shape with four parameters defining
the x,y-half lengths and the x,y-radii.

racetrack A rectangular shape with corners rounded by an elliptical shape with four parameters
defining the x,y-half lengths and the corners x,y-radii.

octagon A rectangular shape with corners truncated by a triangular shape with four parameters
defining the x,y-half lengths and the triangle x,y-side lengths. An octagon can model
hexagon or diamond shapes by equating the triangle lengths to the rectangle half-lengths.

polygon A polygonal shape defined by two vectors vx and vy holding the vertices coordinates.
The polygon does not need to be convex, simple or closed, but in the latter case it will
be closed automatically by joining the first and the last vertices.

bbox A 6D bounding box with six parameters defining the upper limits of the absolute values
of the six coordinates.

The following example defines new classes with three different aperture definitions:

local quadrupole in MAD.element

local mq = quadrupole ’mq’ { l=1, −− new class

aperture = { kind=’racetrack’,

tilt=pi/2, xoff=1e−3, yoff=5e−4, −− attributes

0.06,0.06,0.01,0.01 } −− parameters

}

12It is the responsibility of the user to ensure that maper defines a smaller aperture than the polygon aperture.

10. MISALIGNMENT 57

local mqdiam = quadrupole ’mqdiam’ { l=1, −− new class

aperture = { kind=’octogon’, xoff=1e−3, yoff=1e−3, −− attributes

0.06,0.04,0.06,0.04 } −− parameters

}

local mqpoly = quadrupole ’mqpoly’ { l=1, −− new class

aperture = { kind=’polygon’, tilt=pi/2, xoff=1e−3, yoff=1e−3, −− attributes

vx=vector{0.05, ...}, vy=vector{0, ...}, −− parameters

aper={kind=’circle’, 0.05} −− 2nd aperture

}

10 Misalignment
The misalignments are mappable defined at the entry of an element by the following attributes, see the
track command for details:

dx, dy, ds A number specifying the x,y,s-displacement at the element entry [m], see Figures 6.3
and 6.4. (default: 0).

dtheta A number specifying the y-rotation angle (azimuthal) at the element entry [rad], see
Figure 6.3. (default: 0).

dphi A number specifying the −x-rotation angle (elevation) at the entry of the element [rad],
see Figure 6.4. (default: 0).

dpsi A number specifying the s-rotation angle (roll) at the element entry [rad], see Figure 6.5.
(default: 0).

Two kinds of misalignments are available for an element and summed beforehand:

– The absolute misalignments of the element versus its local reference frame, and specified by its
misalign attribute. These misalignments are always considered.

– The relative misalignments of the element versus a given sequence, and specified by the method
:misalign of sequence. These misalignments can be considered or not depending of command
settings.

Figure 6.3: Displacements in the (x, s) plane.

original
beam line s

y

x

original entrance
of the magnet

ds

dx

dtheta

10. MISALIGNMENT 58

Figure 6.4: Displacements in the (y, s) plane.

original
beam line s

×
x

y

original entrance
of the magnet

ds

dy

dphi

Figure 6.5: Displacements in the (x, y) plane.

horizontal
planex

×
s

y

dpsi

tilt

Chapter 7. Sequences

The MAD Sequences are objects convenient to describe accelerators lattices built from a list of elements
with increasing s-positions. The sequences are also containers that provide fast access to their elements
by referring to their indexes, s-positions, or (mangled) names, or by running iterators constrained with
ranges and predicates.

The sequence object is the root object of sequences that store information relative to lattices.

The sequence module extends the typeid module with the is_sequence function, which returns true
if its argument is a sequence object, false otherwise.

1 Attributes
The sequence object provides the following attributes:

l A number specifying the length of the sequence [m]. A nil will be replaced by the
computed lattice length. A value greater or equal to the computed lattice length will be
used to place the $end marker. Other values will raise an error. (default: nil).

dir A number holding one of 1 (forward) or −1 (backward) and specifying the direction of
the sequence.1 (default: 1)

refer A string holding one of "entry", "centre" or "exit" to specify the default reference
position in the elements to use for their placement. An element can override it with its
refpos attribute, see element positions for details. (default: nil ≡ "centre").

owner A logical specifying if an empty sequence is a view with no data (owner ~= true), or
a sequence holding data (owner == true). (default: nil)

minlen A number specifying the minimal length [m] to generate implicit drifts between elements
in s-iterators generated by the method :siter. This attribute is automatically set to
10−6 m when a sequence is created within the MADX environment. (default: nil)

beam An attached beam. (default: nil)

Warning: the following private and read-only attributes are present in all sequences and should never be
used, set or changed; breaking this rule would lead to an undefined behavior:

__dat A table containing all the private data of sequences.

__cycle A reference to the element registered with the :cycle method. (default: nil)

2 Methods
The sequence object provides the following methods:

elem A method (idx) returning the element stored at the positive index idx in the sequence,
or nil.

spos A method (idx) returning the s-position at the entry of the element stored at the positive
index idx in the sequence, or nil.

1This is equivalent to the MAD-X bv flag.

59

2. METHODS 60

upos A method (idx) returning the s-position at the user-defined refpos offset of the element
stored at the positive index idx in the sequence, or nil.

ds A method (idx) returning the length of the element stored at the positive index idx in
the sequence, or nil.

align A method (idx) returning a set specifying the misalignment of the element stored at the
positive index idx in the sequence, or nil.

index A method (idx) returning a positive index, or nil. If idx is negative, it is reflected
versus the size of the sequence, e.g. −1 becomes #self, the index of the $end marker.

name_of A method (idx, [ref]) returning a string corresponding to the (mangled) name of the
element at the index idx or nil. An element name appearing more than once in the
sequence will be mangled with an absolute count, e.g. mq[3], or a relative count versus
the optional reference element ref determined by :index_of, e.g. mq{−2}.

index_of A method (a, [ref], [dir]) returning a number corresponding to the positive index
of the element determined by the first argument or nil. If a is a number (or a string
representing a number), it is interpreted as the s-position of an element and returned
as a second number. If a is a string, it is interpreted as the (mangled) name of an ele-
ment as returned by :name_of. Finally, a can be a reference to an element to search
for. The argument ref (default: nil) specifies the reference element determined by
:index_of(ref) to use for relative s-positions, for decoding mangled names with re-
lative counts, or as the element to start searching from. The argument dir (default: 1)
specifies the direction of the search with values 1 (forward), −1 (backward), or 0 (no
direction). The dir=0 case may return an index at half-integer if a is interpreted as an
s-position pointing to an implicit drift.

range_of A method ([rng], [ref], [dir]) returning three numbers corresponding to the pos-
itive indexes start and end of the range and its direction dir, or nil for an empty range.
If rng is omitted, it returns 1, #self, 1, or #self, 1, −1 if dir is negative. If rng is
a number or a string with no ’/’ separator, it is interpreted as both start and end and
determined by index_of. If rng is a string containing the separator ’/’, it is split in
two strings interpreted as start and end, both determined by :index_of. If rng is a list,
it will be interpreted as { start, end, [ref], [dir] }, both determined by :index_of,
unless ref equals ’idx’ then both are determined by :index (i.e. a number is inter-
preted as an index instead of a s-position). The arguments ref (default: nil) and dir

(default: 1) are forwarded to all invocations of :index_of with a higher precedence
than ones in the list rng, and a runtime error is raised if the method returns nil, i.e. to
disambiguate between a valid empty range and an invalid range.

length_of A method ([rng], [ntrn], [dir]) returning a number specifying the length of the
range optionally including ntrn extra turns (default: 0), and calculated from the indexes
returned by :range_of([rng], nil, [dir]).

iter A method ([rng], [ntrn], [dir]) returning an iterator over the sequence elements.
The optional range is determined by :range_of(rng, [dir]), optionally including
ntrn turns (default: 0). The optional direction dir specifies the forward 1 or the back-
ward −1 direction of the iterator. If rng is not provided and the mtable is cycled, the
start and end indexes are determined by :index_of(self.__cycle). When used with
a generic for loop, the iterator returns at each element: its index, the element itself, its
s-position over the running loop and its signed length depending on the direction.

2. METHODS 61

siter A method ([rng], [ntrn], [dir]) returning an s-iterator over the sequence ele-
ments. The optional range is determined by :range_of([rng], nil, [dir]), option-
ally including ntrn turns (default: 0). The optional direction dir specifies the forward
1 or the backward −1 direction of the iterator. When used with a generic for loop, the
iterator returns at each iteration: its index, the element itself or an implicit drift, its
s-position over the running loop and its signed length depending on the direction. Each
implicit drift is built on-the-fly by the iterator with a length equal to the gap between the
elements surrounding it and a half-integer index equal to the average of their indexes.
The length of implicit drifts is bounded by the maximum between the sequence attribute
minlen and the minlen from the constant module.

foreach A method (act, [rng], [sel], [not]) returning the sequence itself after applying
the action act on the selected elements. If act is a set representing the arguments in the
packed form, the missing arguments will be extracted from the attributes action, range,
select and default. The action act must be a callable (elm, idx, [midx]) applied
to an element passed as first argument and its index as second argument, the optional
third argument being the index of the main element in case elm is a sub-element. The
optional range is used to generate the loop iterator :iter([rng]). The optional selector
sel is a callable (elm, idx, [midx]) predicate selecting eligible elements for the
action using the same arguments. The selector sel can be specified in other ways, see
element selections for details. The optional logical not (default: false) indicates how
to interpret default selection, as all or none, depending on the semantic of the action.2

select A method ([flg], [rng], [sel], [not]) returning the sequence itself after apply-
ing the action :select([flg]) to the elements using :foreach(act, [rng], [sel],

[not]). By default sequence have all their elements deselected with only the $end

marker observed.

deselect A method ([flg], [rng], [sel], [not]) returning the sequence itself after ap-
plying the action :deselect([flg]) to the elements using :foreach(act, [rng],

[sel], [not]). By default sequence have all their elements deselected with only the
$end marker observed.

filter A method ([rng], [sel], [not]) returning a list containing the positive indexes of
the elements determined by :foreach(filt_act, [rng], [sel], [not]), and its
size. The logical sel.subelem specifies to select sub-elements too, and the list may
contain non-integer indexes encoding their main element index added to their relative
position, i.e. midx.sat. The builtin function math.modf(num) allows to retrieve easily
the main element midx and the sub-element sat, e.g. midx,sat = math.modf(val).

install A method (elm, [rng], [sel], [cmp]) returning the sequence itself after installing
the elements in the list elm at their element positions; unless from="selected" is
defined meaning multiple installations at positions relative to each element determined
by the method :filter([rng], [sel], true). The logical sel.subelem is ignored.
If the arguments are passed in the packed form, the extra attribute elements will be used
as a replacement for the argument elm. The logical elm.subelem specifies to install
elements with s-position falling inside sequence elements as sub-elements, and set their
sat attribute accordingly. The optional callable cmp(elmspos, spos[idx]) (default:
"<") is used to search for the s-position of the installation, where equal s-position are
installed after (i.e. before with "<="), see bsearch from the utility module for details.
The implicit drifts are checked after each element installation.

2For example, the :remove method needs not=true to not remove all elements if no selector is provided.

2. METHODS 62

replace A method (elm, [rng], [sel]) returning the list of replaced elements by the ele-
ments in the list elm placed at their element positions, and the list of their respective
indexes, both determined by :filter([rng], [sel], true). The list elm cannot
contain instances of sequence or bline elements and will be recycled as many times as
needed to replace all selected elements. If the arguments are passed in the packed form,
the extra attribute elements will be used as a replacement for the argument elm. The
logical sel.subelem specifies to replace selected sub-elements too and set their sat
attribute to the same value. The implicit drifts are checked only once all elements have
been replaced.

remove A method ([rng], [sel]) returning the list of removed elements and the list of their
respective indexes, both determined by :filter([rng], [sel], true). The logical
sel.subelem specifies to remove selected sub-elements too.

move A method ([rng], [sel]) returning the sequence itself after updating the element
positions at the indexes determined by :filter([rng], [sel], true). The logical
sel.subelem is ignored. The elements must keep their order in the sequence and sur-
rounding implicit drifts are checked only once all elements have been moved.3

misalign A method (algn, [rng], [sel]) returning the sequence itself after setting the ele-
ment misalignments from algn at the indexes determined by :filter([rng], [sel],

true). If algn is a mappable, it will be used to misalign the filtered elements. If algn is
a iterable, it will be accessed using the filtered elements indexes to retrieve their specific
misalignment. If algn is a callable (idx), it will be invoked for each filtered element
with their index as solely argument to retrieve their specific misalignment.

reflect A method ([name]) returning a new sequence from the sequence reversed, and named
from the optional string name (default: self.name..’_rev’).

cycle A method (a) returning the sequence itself after checking that a is a valid reference using
:index_of(a), and storing it in the __cycle attribute, itself erased by the methods
editing the sequence like :install, :replace, :remove, :share, and :unique.

share A method (seq2) returning the list of elements removed from the seq2 and the list of
their respective indexes, and replaced by the elements from the sequence with the same
name when they are unique in both sequences.

unique A method ([fmt]) returning the sequence itself after replacing all non-unique elements
by new instances sharing the same parents. The optional fmt must be a callable (name,
cnt, idx) that returns the mangled name of the new instance build from the ele-
ment name, its count cnt and its index idx in the sequence. If the optional fmt is a
string, the mangling callable is built by binding fmt as first argument to the function
string.format from the standard library, see Lua 5.2 §6.4 for details.

publish A method (env, [keep]) returning the sequence after publishing all its elements in
the environment env. If the logical keep is true, the method will preserve existing
elements from being overridden. This method is automatically invoked with keep=true

when sequences are created within the MADX environment.

copy A method ([name], [owner]) returning a new sequence from a copy of self, with the
optional name and the optional attribute owner set. If the sequence is a view, so will be
the copy unless owner == true.

3Updating directly the positions attributes of an element has no effect.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

3. METAMETHODS 63

is_view A method () returning true if the sequence is a view over another sequence data, false
otherwise.

set_readonly Set the sequence as read-only, including its columns.

save_flags A method ([flgs]) saving the flags of all the elements to the optional iterable flgs

(default: {}) and return it.

restore_flags A method (flgs) restoring the flags of all the elements from the iterable flgs. The
indexes of the flags must match the indexes of the elements in the sequence.

dumpseq A method ([fil], [info]) displaying on the optional file fil (default: io.stdout)
information related to the position and length of the elements. Useful to identify negative
drifts and badly positioned elements. The optional argument info indicates to display
extra information like elements misalignments.

check_sequ A method () checking the integrity of the sequence and its dictionary, for debugging
purpose only.

3 Metamethods
The sequence object provides the following metamethods:

__len A metamethod () called by the length operator # to return the size of the sequence,
i.e. the number of elements stored including the "$start" and "$end" markers.

__index A metamethod (key) called by the indexing operator [key] to return the value of an
attribute determined by key. The key is interpreted differently depending on its type with
the following precedence:

1. A number is interpreted as an element index and returns the element or nil.
2. Other key types are interpreted as object attributes subject to object model lookup.
3. If the value associated with key is nil, then key is interpreted as an element name

and returns either the element or an iterable on the elements with the same name.4

4. Otherwise returns nil.

__newindex A metamethod (key, val) called by the assignment operator [key]=val to create new
attributes for the pairs (key, value). If key is a number specifying the index or a string
specifying the name of an existing element, the following error is raised:

"invalid sequence write access (use replace method)"

__init A metamethod () called by the constructor to compute the elements positions.5

__copy A metamethod () similar to the :copy method.

The following attribute is stored with metamethods in the metatable, but has different purpose:

__sequ A unique private reference that characterizes sequences.
4An iterable supports the length operator #, the indexing operator [], and generic for loops with ipairs.
5MAD-NG does not have a MAD-X like "USE" command to finalize this computation.

4. SEQUENCES CREATION 64

4 Sequences creation
During its creation as an object, a sequence can defined its attributes as any object, and the list of its
elements that must form a sequence of increasing s-positions. When subsequences are part of this list,
they are replaced by their respective elements as a sequence element cannot be present inside other
sequences. If the length of the sequence is not provided, it will be computed and set automatically.
During their creation, sequences compute the s-positions of their elements as described in the section
element positions, and check for overlapping elements that would raise a “negative drift” runtime error.

The following example shows how to create a sequence form a list of elements and subsequences:

local sequence, drift, marker in MAD.element

local df, mk = drift ’df’ {l=1}, marker ’mk’ {}

local seq = sequence ’seq’ {

df ’df1’ {}, mk ’mk1’ {},

sequence {

sequence { mk ’mk0’ {} },

df ’df.s’ {}, mk ’mk.s’ {}

},

df ’df2’ {}, mk ’mk2’ {},

} :dumpseq()

−− display

sequence: seq, l=3

idx kind name l dl spos upos uds

001 marker $start 0.000 0 0.000 0.000 0.000

002 drift df1 1.000 0 0.000 0.500 0.500

003 marker mk1 0.000 0 1.000 1.000 0.000

004 marker mk0 0.000 0 1.000 1.000 0.000

005 drift df.s 1.000 0 1.000 1.500 0.500

006 marker mk.s 0.000 0 2.000 2.000 0.000

007 drift df2 1.000 0 2.000 2.500 0.500

008 marker mk2 0.000 0 3.000 3.000 0.000

009 marker $end 0.000 0 3.000 3.000 0.000

5 Elements positions
A sequence looks at the following attributes of an element, including sub-sequences, when installing it,
and only at that time, to determine its position:

at A number holding the position in [m] of the element in the sequence relative to the
position specified by the from attribute.

from A string holding one of "start", "prev", "next", "end" or "selected", or the
(mangled) name of another element to use as the reference position, or a number holding
a position in [m] from the start of the sequence. (default: "start" if at> 0, "end" if
at< 0, and "prev" otherwise)

refpos A string holding one of "entry", "centre" or "exit", or the (mangled) name of a
sequence sub-element to use as the reference position, or a number specifying a position
[m] from the start of the element, all of them resulting in an offset to substract to the at
attribute to find the s-position of the element entry. (default: nil ≡ self.refer).

6. ELEMENTS SELECTIONS 65

shared A logical specifying if an element is used at different positions in the same sequence
definition, i.e. shared multiple times, through temporary instances to store the many
at and from attributes needed to specify its positions. Once built, the sequence will
drop these temporary instances in favor of their common parent, i.e. the original shared
element.

Warning: The at and from attributes are not considered as intrinsic properties of the elements and are
used only once during installation. Any reuse of these attributes is the responsibility of the user, including
the consistency between at and from after updates.

6 Elements selections
The element selection in sequence use predicates in combination with iterators. The sequence iterator
manages the range of elements where to apply the selection, while the predicate says if an element in this
range is illegible for the selection. In order to ease the use of methods based on the :foreach method,
the selector predicate sel can be built from different types of information provided in a set with the
following attributes:

flag A number interpreted as a flags mask to pass to the element method :is_selected.
It should not be confused with the flags passed as argument to methods :select and
:deselect, as both flags can be used together but with different meanings!

pattern A string interpreted as a pattern to match the element name using string.match from
the standard library, see Lua 5.2 §6.4 for details.

class An element interpreted as a class to pass to the element method :is_instansceOf.

list An iterable interpreted as a list used to build a set and select the elements by their name,
i.e. the built predicate will use tbl[elm.name] as a logical. If the iterable is a single
item, e.g. a string, it will be converted first to a list.

table A mappable interpreted as a set used to select the elements by their name, i.e. the built
predicate will use tbl[elm.name] as a logical. If the mappable contains a list or is a
single item, it will be converted first to a list and its set part will be discarded.

select A callable interpreted as the selector itself, which allows to build any kind of predicate
or to complete the restrictions already built above.

subelem A boolean indicating to include or not the sub-elements in the scanning loop. The predic-
ate and the action receive the sub-element and its sub-index as first and second argument,
and the main element index as third argument.

All these attributes are used in the aforementioned order to incrementally build predicates that are com-
bined with logical conjunctions, i.e. and’ed, to give the final predicate used by the :foreach method. If
only one of these attributes is needed, it is possible to pass it directly in sel, not as an attribute in a set,
and its type will be used to determine the kind of predicate to build. For example, self:foreach(act,
monitor) is equivalent to self:foreach{action=act, class=monitor}.

7 Indexes, names and counts
Indexing a sequence triggers a complex look up mechanism where the arguments will be interpreted
in various ways as described in the :__index metamethod. A number will be interpreted as a relative
slot index in the list of elements, and a negative index will be considered as relative to the end of the

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

8. ITERATORS AND RANGES 66

sequence, i.e. −1 is the $end marker. Non-number will be interpreted first as an object key (can be
anything), looking for sequence methods or attributes; then as an element name if nothing was found.

If an element exists but its name is not unique in the sequence, an iterable is returned. An iterable
supports the length # operator to retrieve the number of elements with the same name, the indexing
operator [] waiting for a count n to retrieve the n-th element from the start with that name, and the
iterator ipairs to use with generic for loops.

The returned iterable is in practice a proxy, i.e. a fake intermediate object that emulates the expected
behavior, and any attempt to access the proxy in another manner should raise a runtime error.

Warning: The indexing operator [] interprets a number as a (relative) element index as the method
:index, while the method :index_of interprets a number as a (relative) element s-position [m].

The following example shows how to access to the elements through indexing and the iterable:

local sequence, drift, marker in MAD.element

local seq = sequence {

drift ’df’ { id=1 }, marker ’mk’ { id=2 },

drift ’df’ { id=3 }, marker ’mk’ { id=4 },

drift ’df’ { id=5 }, marker ’mk’ { id=6 },

}

print(seq[1].name) −− display: $start (start marker)

print(seq[−1].name) −− display: $end (end marker)

print(#seq.df, seq.df[3].id) −− display: 3 5

for _,e in ipairs(seq.df) do io.write(e.id," ") end −− display: 1 3 5

for _,e in ipairs(seq.mk) do io.write(e.id," ") end −− display: 2 4 6

−− print name of drift with id=3 in absolute and relative to id=6.

print(seq:name_of(4)) −− display: df[2] (2nd df from start)

print(seq:name_of(2, −2)) −− display: df{−3} (3rd df before last mk)

The last two lines of code display the name of the same element but mangled with absolute and relative
counts.

8 Iterators and ranges
Ranging a sequence triggers a complex look up mechanism where the arguments will be interpreted
in various ways as described in the :range_of method, itself based on the methods :index_of and
:index. The number of elements selected by a sequence range can be computed by the :length_of

method, which accepts an extra number of turns to consider in the calculation.

The sequence iterators are created by the methods :iter and :siter, and both are based on the :range_of
method as mentioned in their descriptions and includes an extra number of turns as for the method
:length_of, and a direction 1 (forward) or −1 (backward) for the iteration. The :siter differs from the
:iter by its loop, which returns not only the sequence elements but also implicit drifts built on-the-fly
when a gap > 10−12 m is detected between two sequence elements. Such implicit drift have half-integer
indexes and make the iterator “continuous” in s-positions.

The method :foreach uses the iterator returned by :iter with a range as its sole argument to loop
over the elements where to apply the predicate before executing the action. The methods :select,
:deselect, :filter, :install, :replace, :remove, :move, and :misalign are all based directly or
indirectly on the :foreach method. Hence, to iterate backward over a sequence range, these methods
have to use either its list form or a numerical range. For example the invocation seq:foreach(\e −>
print(e.name), {−2, 2, ’idx’, −1}) will iterate backward over the entire sequence seq excluding

9. EXAMPLES 67

the $start and $endmarkers, while the invocation seq:foreach(\e −> print(e.name), 5..2..−1)
will iterate backward over the elements with s-positions sitting in the interval [2, 5] m.

The tracking commands survey and track use the iterator returned by :siter for their main loop, with
their range, nturn and dir attributes as arguments. These commands also save the iterator states in
their mflw to allow the users to run them nstep by nstep, see commands survey and track for details.

The following example shows how to access to the elements with the :foreach method:

local sequence, drift, marker in MAD.element

local observed in MAD.element.flags

local seq = sequence {

drift ’df’ { id=1 }, marker ’mk’ { id=2 },

drift ’df’ { id=3 }, marker ’mk’ { id=4 },

drift ’df’ { id=5 }, marker ’mk’ { id=6 },

}

local act = \e −> print(e.name,e.id)

seq:foreach(act, "df[2]/mk[3]")

−− display:

df 3

mk 4

df 5

mk 6

seq:foreach{action=act, range="df[2]/mk[3]", class=marker}

−− display: markers at ids 4 and 6

seq:foreach{action=act, pattern="^[^$]"}

−− display: all elements except $start and $end markers

seq:foreach{action=\e −> e:select(observed), pattern="mk"}

−− same as: seq:select(observed, {pattern="mk"})

local act = \e −> print(e.name, e.id, e:is_observed())

seq:foreach{action=act, range="#s/#e"}

−− display:

$start nil false

df 1 false

mk 2 true

df 3 false

mk 4 true

df 5 false

mk 6 true

$end nil true

9 Examples
9.1 FODO cell
The following example shows how to build a very simple FODO cell and an arc made of 10 FODO cells.

local sequence, sbend, quadrupole, sextupole, hkicker, vkicker, marker in MAD.element

local mkf = marker ’mkf’ {}

local ang=2*math.pi/80

9. EXAMPLES 68

local fodo = sequence ’fodo’ { refer=’entry’,

mkf { at=0, shared=true }, −− mark the start of the fodo

quadrupole ’qf’ { at=0, l=1 , k1=0.3 },

sextupole ’sf’ { l=0.3, k2=0 },

hkicker ’hk’ { l=0.2, kick=0 },

sbend ’mb’ { at=2, l=2 , angle=ang },

quadrupole ’qd’ { at=5, l=1 , k1=−0.3 },

sextupole ’sd’ { l=0.3, k2=0 },

vkicker ’vk’ { l=0.2, kick=0 },

sbend ’mb’ { at=7, l=2 , angle=ang },

}

local arc = sequence ’arc’ { refer=’entry’, 10*fodo }

fodo:dumpseq() ; print(fodo.mkf, mkf)

−− display:

sequence: fodo, l=9

idx kind name l dl spos upos uds

001 marker $start 0.000 0 0.000 0.000 0.000

002 marker mkf 0.000 0 0.000 0.000 0.000

003 quadrupole qf 1.000 0 0.000 0.000 0.000

004 sextupole sf 0.300 0 1.000 1.000 0.000

005 hkicker hk 0.200 0 1.300 1.300 0.000

006 sbend mb 2.000 0 2.000 2.000 0.000

007 quadrupole qd 1.000 0 5.000 5.000 0.000

008 sextupole sd 0.300 0 6.000 6.000 0.000

009 vkicker vk 0.200 0 6.300 6.300 0.000

010 sbend mb 2.000 0 7.000 7.000 0.000

011 marker $end 0.000 0 9.000 9.000 0.000

marker: ’mkf’ 0x01015310e8 marker: ’mkf’ 0x01015310e8 −− same marker

9.2 SPS compact description
The following dummy example shows a compact definition of the SPS mixing elements, beam lines and
sequence definitions. The elements are zero-length, so the lattice is too.

local drift, sbend, quadrupole, bline, sequence in MAD.element

−− elements (empty!)

local ds = drift ’ds’ {}

local dl = drift ’dl’ {}

local dm = drift ’dm’ {}

local b1 = sbend ’b1’ {}

local b2 = sbend ’b2’ {}

local qf = quadrupole ’qf’ {}

local qd = quadrupole ’qd’ {}

−− subsequences

local pf = bline ’pf’ {qf,2*b1,2*b2,ds} −− #: 6

local pd = bline ’pd’ {qd,2*b2,2*b1,ds} −− #: 6

local p24 = bline ’p24’ {qf,dm,2*b2,ds,pd} −− #: 11 (5+6)

local p42 = bline ’p42’ {pf,qd,2*b2,dm,ds} −− #: 11 (6+5)

9. EXAMPLES 69

local p00 = bline ’p00’ {qf,dl,qd,dl} −− #: 4

local p44 = bline ’p44’ {pf,pd} −− #: 12 (6+6)

local insert = bline ’insert’ {p24,2*p00,p42} −− #: 30 (11+2*4+11)

local super = bline ’super’ {7*p44,insert,7*p44} −− #: 198 (7*12+30+7*12)

−− final sequence

local SPS = sequence ’SPS’ {6*super} −− # = 1188 (6*198)

−− check number of elements and length

print(#SPS, SPS.l) −− display: 1190 0 (no element length provided)

9.3 Installing elements I
The following example shows how to install elements and subsequences in an empty initial sequence:

local sequence, drift in MAD.element

local seq = sequence "seq" { l=16, refer="entry", owner=true }

local sseq1 = sequence "sseq1" {

at=5, l=6 , refpos="centre", refer="entry",

drift "df1’" {l=1, at=−4, from="end"},

drift "df2’" {l=1, at=−2, from="end"},

drift "df3’" { at= 5 },

}

local sseq2 = sequence "sseq2" {

at=14, l=6, refpos="exit", refer="entry",

drift "df1’’" { l=1, at=−4, from="end"},

drift "df2’’" { l=1, at=−2, from="end"},

drift "df3’’" { at= 5 },

}

seq:install {

drift "df1" {l=1, at=1},

sseq1, sseq2,

drift "df2" {l=1, at=15},

} :dumpseq()

−− display:

sequence: seq, l=16

idx kind name l dl spos upos uds

001 marker $start 0.000 0 0.000 0.000 0.000

002 drift df1 1.000 0 1.000 1.000 0.000

003 drift df1’ 1.000 0 4.000 4.000 0.000

004 drift df2’ 1.000 0 6.000 6.000 0.000

005 drift df3’ 0.000 0 7.000 7.000 0.000

006 drift df1’’ 1.000 0 10.000 10.000 0.000

007 drift df2’’ 1.000 0 12.000 12.000 0.000

008 drift df3’’ 0.000 0 13.000 13.000 0.000

009 drift df2 1.000 0 15.000 15.000 0.000

010 marker $end 0.000 0 16.000 16.000 0.000

9. EXAMPLES 70

9.4 Installing elements II
The following more complex example shows how to install elements and subsequences in a sequence
using a selection and the packed form for arguments:

local mk = marker "mk" { }

local seq = sequence "seq" { l = 10, refer="entry",

mk "mk1" { at = 2 },

mk "mk2" { at = 4 },

mk "mk3" { at = 8 },

}

local sseq = sequence "sseq" { l = 3 , at = 5, refer="entry",

drift "df1’" { l = 1, at = 0 },

drift "df2’" { l = 1, at = 1 },

drift "df3’" { l = 1, at = 2 },

}

seq:install {

class = mk,

elements = {

drift "df1" { l = 0.1, at = 0.1, from="selected" },

drift "df2" { l = 0.1, at = 0.2, from="selected" },

drift "df3" { l = 0.1, at = 0.3, from="selected" },

sseq,

drift "df4" { l = 1, at = 9 },

}

}

seq:dumpseq()

−− display:

sequence: seq, l=10

idx kind name l dl spos upos uds

001 marker $start 0.000 0 0.000 0.000 0.000

002 marker mk1 0.000 0 2.000 2.000 0.000

003 drift df1 0.100 0 2.100 2.100 0.000

004 drift df2 0.100 0 2.200 2.200 0.000

005 drift df3 0.100 0 2.300 2.300 0.000

006 marker mk2 0.000 0 4.000 4.000 0.000

007 drift df1 0.100 0 4.100 4.100 0.000

008 drift df2 0.100 0 4.200 4.200 0.000

009 drift df3 0.100 0 4.300 4.300 0.000

010 drift df1’ 1.000 0 5.000 5.000 0.000

011 drift df2’ 1.000 0 6.000 6.000 0.000

012 drift df3’ 1.000 0 7.000 7.000 0.000

013 marker mk3 0.000 0 8.000 8.000 0.000

014 drift df1 0.100 0 8.100 8.100 0.000

015 drift df2 0.100 0 8.200 8.200 0.000

016 drift df3 0.100 0 8.300 8.300 0.000

017 drift df4 1.000 0 9.000 9.000 0.000

018 marker $end 0.000 0 10.000 10.000 0.000

Chapter 8. MTables

The MAD Tables (MTables) — also named Table File System (TFS) — are objects convenient to store,
read and write a large amount of heterogeneous information organized as columns and header. The
MTables are also containers that provide fast access to their rows, columns, and cells by referring to their
indexes, or some values of the designated reference column, or by running iterators constrained with
ranges and predicates.

The mtable object is the root object of the TFS tables that store information relative to tables.

The mtable module extends the typeid module with the is_mtable function, which returns true if its
argument is a mtable object, false otherwise.

1 Attributes
The mtable object provides the following attributes:

type A string specifying the type of the mtable (often) set to the name of the command that
created it, like survey, track or twiss. (default: ’user’).

title A string specifying the title of the mtable (often) set to the attribute title of the com-
mand that created it. (default: ’no-title’).

origin A string specifying the origin of the mtable. (default: "MAD version os arch").

date A string specifying the date of creation of the mtable. (default: "day/month/year").

time A string specifying the time of creation of the mtable. (default: "hour:min:sec").

refcol A string specifying the name of the reference column used to build the dictionary of the
mtable, and to mangle values with counts. (default: nil).

header A list specifying the augmented attributes names (and their order) used by default for the
header when writing the mtable to files. Augmented meaning that the list is concatenated
to the list held by the parent mtable during initialization. (default: {’name’, ’type’,

’title’, ’origin’, ’date’, ’time’, ’refcol’}).

column A list specifying the augmented columns names (and their order) used by default for the
columns when writing the mtable to files. Augmented meaning that the list is concaten-
ated to the list held by the parent mtable during initialization. (default: nil).

novector A logical specifying to not convert (novector == true) columns containing only num-
bers to vectors during the insertion of the second row. The attribute can also be a list
specifying the columns names to remove from the specialization. If the list is empty or
novector ~= true, all numeric columns will be converted to vectors, and support all
methods and operations from the linear algebra module. (default: nil).

owner A logical specifying if an empty mtable is a view with no data (owner ~= true), or a
mtable holding data (owner == true). (default: nil).

reserve A number specifying an estimate of the maximum number of rows stored in the mtable.
If the value is underestimated, the mtable will still expand on need. (default: 8).

Warning: the following private and read-only attributes are present in all mtables and should never be
used, set or changed; breaking this rule would lead to an undefined behavior:

71

2. METHODS 72

__dat A table containing all the private data of mtables.

__seq A sequence attached to the mtable by the survey and track commands and used by the
methods receiving a reference to an element as argument. (default: nil).

__cycle A reference to the row registered with the :cycle method. (default: nil).

2 Methods
The mtable object provides the following methods:

nrow A method () returning the number of rows in the mtable.

ncol A method () returning the number of columns in the mtable.

ngen A method () returning the number of columns generators in the mtable. The number of
columns with data is given by :ncol() − :ngen().

colname A method (idx) returning the string name of the idx-th column in the mtable or nil.

colnames A method ([lst]) returning the list lst (default: {}) filled with all the columns names
of the mtable.

index A method (idx) returning a positive index, or nil. If idx is negative, it is reflected
versus the size of the mtable, e.g. −1 becomes #self, the index of the last row.

name_of A method (idx, [ref]) returning a string corresponding to the (mangled) value from
the reference column of the row at the index idx, or nil. A row value appearing more
than once in the reference column will be mangled with an absolute count, e.g. mq[3], or
a relative count versus the reference row determined by :index_of(ref), e.g. mq{−2}.

index_of A method (a, [ref], [dir]) returning a number corresponding to the positive index
of the row determined by the first argument or nil. If a is a number (or a string rep-
resenting a number), it is interpreted as the index of the row and returned as a second
number. If a is a string, it is interpreted as the (mangled) value of the row in the reference
column as returned by :name_of. Finally, a can be a reference to an element to search
for if the mtable has both, an attached sequence, and a column named ’eidx’ mapping
the indexes of the elements to the attached sequence.1 The argument ref (default: nil)
specifies the reference row determined by :index_of(ref) to use for relative indexes,
for decoding mangled values with relative counts, or as the reference row to start search-
ing from. The argument dir (default: 1) specifies the direction of the search with values
1 (forward), −1 (backward), or 0 (no direction), which correspond respectively to the
rounding methods ceil, floor and round from the gmath module.

range_of A method ([rng], [ref], [dir]) returning three numbers corresponding to the pos-
itive indexes start and end of the range and its direction dir (default: 1), or nil for an
empty range. If rng is omitted, it returns 1, #self, 1, or #self, 1, −1 if dir is negat-
ive. If rng is a number or a string with no ’/’ separator, it is interpreted as start and
end, both determined by :index_of. If rng is a string containing the separator ’/’, it
is split in two strings interpreted as start and end, both determined by :index_of. If
rng is a list, it will be interpreted as { start, end, [ref], [dir] }, both determined by
:index_of. The arguments ref and dir are forwarded to all invocations of :index_of

1These information are usually provided by the command creating the mtable, like survey and track.

2. METHODS 73

with a higher precedence than ones in the list rng, and a runtime error is raised if the
method returns nil, i.e. to disambiguate between a valid empty range and an invalid
range.

length_of A method ([rng], [ntrn], [dir]) returning a number specifying the length of the
range optionally including ntrn extra turns (default: 0), and calculated from the indexes
returned by :range_of([rng], nil, [dir]).

get A method (row, col, [cnt]) returning the value stored in the mtable at the cell
(row,col), or nil. If row is a not a row index determined by :index(row), it is
interpreted as a (mangled) value to search in the reference column, taking into account
the count cnt (default: 1). If col is not a column index, it is interpreted as a column
name.

set A method (row, col, val, [cnt]) returning the mtable itself after updating the cell
(row,col) to the value val, or raising an error if the cell does not exist. If row is a not a
row index determined by :index(row), it is interpreted as a (mangled) value to search
in the reference column, taking into account the count cnt (default: 1). If col is not a
column index, it is interpreted as a column name.

getcol A method (col) returning the column col, or nil. If col is not a column index, it is
interpreted as a column name.

setcol A method (col, val) returning the mtable itself after updating the column col with
the values of val, or raising an error if the column does not exist. If col is not a column
index, it is interpreted as a column name. If the column is a generator, so must be val

or an error will be raised. If the column is not a generator and val is a callable (ri),
it will be invoked with the row index ri as its sole argument, using its returned value to
update the column cell. Otherwise val must be an iterable or an error will be raised. If
the column is already a specialized vector, the iterable must provide enough numbers to
fill it entirely as nil is not a valid value.

inscol A method ([ref], col, val, [nvec]) returning the mtable itself after inserting the
column data val with the string name col at index ref (default: :ncol()+1). If ref is
not a column index, it is interpreted as a column name. If val is a callable (ri), it will
be added as a column generator. Otherwise val must be an iterable or an error will be
raised. The iterable will used to fill the new column that will be specialized to a vector
if its first value is a number and nvec ~= true (default: nil).

addcol A method (col, val, [nvec]) equivalent to :inscol(nil, col, val, [nvec]).

remcol A method (col) returning the mtable itself after removing the column col, or raising
an error if the column does not exist. If col is not a column index, it is interpreted as a
column name.

rencol A method (col, new) returning the mtable itself after renaming the column col to the
string new, or raising an error if the column does not exist. If col is not a column index,
it is interpreted as a column name.

getrow A method (row, [ref]) returning the mappable (proxy) of the row determined by the
method :index_of(row, [ref]), or nil.

setrow A method (row, val, [ref]) returning the mtable itself after updating the row at
index determined by :index_of(row, [ref]) using the values provided by the map-
pable val, which can be a list iterated as pairs of (index, value) or a set iterated as pairs

2. METHODS 74

of (key, value) with key being the column names, or a combination of the two. An error
is raised if the column does not exist.

insrow A method (row, val, [ref]) returning the mtable itself after inserting a new row at
index determined by :index_of(row, [ref]) and filled with the values provided by
the mappable val, which can be a list iterated as pairs of (index, value) or a set iterated
as pairs of (key, value) with key being the column names or a combination of the two.

addrow A method (val) equivalent to :insrow(#self+1, val).

remrow A method (row, [ref]) returning the mtable itself after removing the row determined
by the method :index_of(row, [ref]), or raising an error if the row does not exist.

swprow A method (row1, row2, [ref1], [ref2]) returning the mtable itself after swapping
the content of the rows, both determined by the method :index_of(row, [ref]), or
raising an error if one of the row does not exist.

clrrow A method (row, [ref]) returning the mtable itself after clearing the row determined
by the method :index_of(row, [ref]), or raising an error if the row does not exist;
where clearing the row means to set vector value to 0 and nil otherwise.

clear A method () returning the mtable itself after clearing all the rows, i.e. #self == 0, with
an opportunity for new columns specialization.

iter A method ([rng], [ntrn], [dir]) returning an iterator over the mtable rows. The
optional range is determined by :range_of([rng], [dir]), optionally including ntrn
turns (default: 0). The optional direction dir specifies the forward 1 or the backward
−1 direction of the iterator. If rng is not provided and the mtable is cycled, the start and
end indexes are determined by :index_of(self.__cycle). When used with a generic
for loop, the iterator returns at each rows the index and the row mappable (proxy).

foreach A method (act, [rng], [sel], [not]) returning the mtable itself after applying
the action act on the selected rows. If act is a set representing the arguments in the
packed form, the missing arguments will be extracted from the attributes action, range,
select and default. The action act must be a callable (row, idx) applied to a
row passed as first argument and its index as second argument. The optional range
is used to generate the loop iterator :iter([rng]). The optional selector sel is a
callable (row, idx) predicate selecting eligible rows for the action from the row itself
passed as first argument and its index as second argument. The selector sel can be
specified in other ways, see row selections for details. The optional logical not (default:
false) indicates how to interpret default selection, as all or none, depending on the
semantic of the action.2

select A method ([rng], [sel], [not]) returning the mtable itself after selecting the rows
using :foreach(sel_act, [rng], [sel], [not]). By default mtable have all their
rows deselected, the selection being stored as boolean in the column at index 0 and
named is_selected.

deselect A method ([rng], [sel], [not]) returning the mtable itself after deselecting the
rows using :foreach(desel_act, [rng], [sel], [not]). By default mtable have
all their rows deselected, the selection being stored as boolean in the column at index 0

and named is_selected.
2For example, the :remove method needs not=true to not remove all rows if no selector is provided.

2. METHODS 75

filter A method ([rng], [sel], [not]) returning a list containing the positive indexes of
the rows determined by :foreach(filt_act, [rng], [sel], [not]), and its size.

insert A method (row, [rng], [sel]) returning the mtable itself after inserting the rows
in the list row at the indexes determined by :filter([rng], [sel], true). If the
arguments are passed in the packed form, the extra attribute rows will be used as a
replacement for the argument row, and if the attribute where="after" is defined then
the rows will be inserted after the selected indexes. The insertion scheme depends on
the number R of rows in the list row versus the number S of rows selected by :filter;
1 × 1 (one row inserted at one index), R × 1 (R rows inserted at one index), 1 × S
(one row inserted at S indexes) and R × S (R rows inserted at S indexes). Hence, the
insertion schemes insert respectively 1, R, S, and min(R,S) rows.

remove A method ([rng], [sel]) returning the mtable itself after removing the rows determ-
ined by :filter([rng], [sel], true).

sort A method (cmp, [rng], [sel]) returning the mtable itself after sorting the rows at the
indexes determined by :filter([rng], [sel], true) using the ordering callable
cmp(row1, row2). The arguments row1 and row2 are mappable (proxies) referring to
the current rows being compared and providing access to the columns values for the
comparison.3 The argument cmp can be specified in a compact ordering form as a string
that will be converted to an ordering callable by the function str2cmp from the utility
module. For example, the string "-y,x" will be converted by the method to the follow-
ing lambda \r1,r2 −> r1.y > r2.y or r1.y == r2.y and r1.x < r2.x, where
y and x are the columns used to sort the mtable in descending (−) and ascending (+)
order respectively. The compact ordering form is not limited in the number of columns
and avoids making mistakes in the comparison logic when many columns are involved.

cycle A method (a) returning the mtable itself after checking that a is a valid reference using
:index_of(a), and storing it in the __cycle attribute, itself erased by the methods
editing the mtable like :insert, :remove or :sort.

copy A method ([name], [owner]) returning a new mtable from a copy of self, with the
optional name and the optional attribute owner set. If the mtable is a view, so will be the
copy unless owner == true.

is_view A method () returning true if the mtable is a view over another mtable data, false
otherwise.

set_readonly Set the mtable as read-only, including the columns and the rows proxies.

read A method ([filname]) returning a new instance of self filled with the data read from
the file determined by openfile(filename, ’r’, {’.tfs’,’.txt’,’.dat’}) from
the utility module. This method can read columns containing the data types nil, boolean,
number, complex number, (numerical) range, and (quoted) string. The header can also
contain tables saved as string and decoded with function str2tbl from the utility mod-
ule.

write A method ([filname], [clst], [hlst], [rsel]) returning the mtable itself after
writing its content to the file determined by openfile(filename, ’w’, {’.tfs’,

’.txt’, ’.dat’}) from the utility module. The columns to write and their order is de-
termined by clst or self.column (default: nil ≡ all columns). The attributes to write

3A mappable supports the length operator #, the indexing operator [], and generic for loops with pairs.

3. METAMETHODS 76

in the header and their order is determined by hlst or self.header. The logical rsel
indicates to save all rows or only rows selected by the :selectmethod (rsel == true).
This method can write columns containing the data types nil, boolean, number, complex
number, (numerical) range, and (quoted) string. The header can also contain tables
saved as string and encoded with function tbl2str from the utility module.

print A method ([clst], [hlst], [rsel]) equivalent to :write(nil, [clst], [hlst],

[rsel]).

save_sel A method ([sel]) saving the rows selection to the optional iterable sel (default: {})
and return it.

restore_sel A method (sel) restoring the rows selection from the iterable sel. The indexes of sel
must match the indexes of the rows in the mtable.

make_dict A method ([col]) returning the mtable itself after building the rows dictionnary from
the values of the reference column determined by col (default: refcol) for fast row
access. If col is not a column index, it is interpreted as a column name except for the
special name ’none’ that disables the rows dictionnary and reset refcol to nil.

check_mtbl A method () checking the integrity of the mtable and its dictionary (if any), for debug-
ging purpose only.

3 Metamethods
The mtable object provides the following metamethods:

__len A metamethod () called by the length operator # to return the number of rows in the
mtable.

__add A metamethod (val) called by the plus operator + returning the mtable itself after ap-
pending the row val at its end, similiar to the :addrow method.

__index A metamethod (key) called by the indexing operator [key] to return the value of an
attribute determined by key. The key is interpreted differently depending on its type with
the following precedence:

1. A number is interpreted as a row index and returns an iterable on the row (proxy)
or nil.

2. Other key types are interpreted as object attributes subject to object model lookup.
3. If the value associated with key is nil, then key is interpreted as a column name

and returns the column if it exists, otherwise...
4. If key is not a column name, then key is interpreted as a value in the reference

column and returns either an iterable on the row (proxy) determined by this value
or an iterable on the rows (proxies) holding this non-unique value.4

5. Otherwise returns nil.

__newindex A metamethod (key, val) called by the assignment operator [key]=val to create new
attributes for the pairs (key, value). If key is a number or a value specifying a row in the
reference column or a string specifying a column name, the following error is raised:

4An iterable supports the length operator #, the indexing operator [], and generic for loops with ipairs.

4. MTABLES CREATION 77

"invalid mtable write access (use ’set’ methods)"

__init A metamethod () called by the constructor to build the mtable from the column names
stored in its list part and some attributes, like owner, reserve and novector.

__copy A metamethod () similar to the method copy.

The following attribute is stored with metamethods in the metatable, but has different purpose:

__mtbl A unique private reference that characterizes mtables.

4 MTables creation
During its creation as an object, a mtable can defined its attributes as any object, and the list of its
column names, which will be cleared after its initialization. Any column name in the list that is enclosed
by braces is designated as the refererence column for the dictionnary that provides fast row indexing, and
the attribute refcol is set accordingly.

Some attributes are considered during the creation by the metamethod __init, like owner, reserve
and novector, and some others are initialized with defined values like type, title, origin, date,
time, and refcol. The attributes header and column are concatenated with the the parent ones to build
incrementing list of attributes names and columns names used by default when writing the mtable to
files, and these lists are not provided as arguments.

The following example shows how to create a mtable form a list of column names add rows:

local mtable in MAD

local tbl = mtable ’mytable’ {

{’name’}, ’x’, ’y’ } −− column ’name’ is the refcol

+ { ’p11’, 1.1, 1.2 }

+ { ’p12’, 2.1, 2.2 }

+ { ’p13’, 2.1, 3.2 }

+ { ’p11’, 3.1, 4.2 }

print(tbl.name, tbl.refcol, tbl:getcol’name’)

−− display: mytable name mtable reference column: 0x010154cd10

Pitfall: When a column is named ’name’, it must be explicitly accessed, e.g. with the :getcol method,
as the indexing operator [] gives the precedence to object’s attributes and methods. Hence, tbl.name
returns the table name ’mytable’, not the column ’name’.

5 Rows selections
The row selection in mtable use predicates in combination with iterators. The mtable iterator manages the
range of rows where to apply the selection, while the predicate says if a row in this range is illegible for
the selection. In order to ease the use of methods based on the :foreach method, the selector predicate
sel can be built from different types of information provided in a set with the following attributes:

selected A boolean compared to the rows selection stored in column ’is_selected’.

pattern A string interpreted as a pattern to match the string in the reference column, which must
exist, using string.match from the standard library, see Lua 5.2 §6.4 for details. If the
reference column does not exist, it can be built using the :make_dict method.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

6. INDEXES, NAMES AND COUNTS 78

list An iterable interpreted as a list used to build a set and select the rows by their name,
i.e. the built predicate will use tbl[row.name] as a logical, meaning that column name

must exists. An alternate column name can be provided through the key colname,
i.e. used as tbl[row[colname]]. If the iterable is a single item, e.g. a string, it will
be converted first to a list.

table A mappable interpreted as a set used to select the rows by their name, i.e. the built
predicate will use tbl[row.name] as a logical, meaning that column name must exists.
If the mappable contains a list or is a single item, it will be converted first to a list and
its set part will be discarded.

kind An iterable interpreted as a list used to build a set and select the rows by their kind,
i.e. the built predicate will use tbl[row.kind] as a logical, meaning that column kind

must exists. If the iterable is a single item, e.g. a string, it will be converted first to a list.
This case is equivalent to list with colname=’kind’.

select A callable interpreted as the selector itself, which allows to build any kind of predicate
or to complete the restrictions already built above.

All these attributes are used in the aforementioned order to incrementally build predicates that are com-
bined with logical conjunctions, i.e. and’ed, to give the final predicate used by the :foreach method. If
only one of these attributes is needed, it is possible to pass it directly in sel, not as an attribute in a set,
and its type will be used to determine the kind of predicate to build. For example, tbl:foreach(act,
"^MB") is equivalent to tbl:foreach{action=act, pattern="^MB"}.

6 Indexes, names and counts
Indexing a mtable triggers a complex look up mechanism where the arguments will be interpreted in
various ways as described in the metamethod __index. A number will be interpreted as a relative row
index in the list of rows, and a negative index will be considered as relative to the end of the mtable,
i.e. −1 is the last row. Non-number will be interpreted first as an object key (can be anything), looking
for mtable methods or attributes; then as a column name or as a row value in the reference column if
nothing was found.

If a row exists but its value is not unique in the reference column, an iterable is returned. An iterable
supports the length # operator to retrieve the number of rows with the same value, the indexing operator
[] waiting for a count n to retrieve the n-th row from the start with that value, and the iterator ipairs
to use with generic for loops.

The returned iterable is in practice a proxy, i.e. a fake intermediate object that emulates the expected
behavior, and any attempt to access the proxy in another manner should raise a runtime error.

Note: Compared to the sequence, the indexing operator [] and the method :index_of of the mtable
always interprets a number as a (relative) row index. To find a row from a s-position [m] in the mtable if
the column exists, use the functions lsearch or bsearch (if they are monotonic) from the utility module.

The following example shows how to access to the rows through indexing and the iterable:

local mtable in MAD

local tbl = mtable { {’name’}, ’x’, ’y’ } −− column ’name’ is the refcol

+ { ’p11’, 1.1, 1.2 }

+ { ’p12’, 2.1, 2.2 }

+ { ’p13’, 2.1, 3.2 }

+ { ’p11’, 3.1, 4.2 }

print(tbl[1].y) −− display: 1.2

7. ITERATORS AND RANGES 79

print(tbl[−1].y) −− display: 4.2

print(#tbl.p11, tbl.p12.y, tbl.p11[2].y) −− display: 2 2.2 4.2

for _,r in ipairs(tbl.p11) do io.write(r.x," ") end −− display: 1.1 3.1

for _,v in ipairs(tbl.p12) do io.write(v, " ") end −− display: ’p12’ 2.1 2.2

−− print name of point with name p11 in absolute and relative to p13.

print(tbl:name_of(4)) −− display: p11[2] (2nd p11 from start)

print(tbl:name_of(1, −2)) −− display: p11{−1} (1st p11 before p13)

The last two lines of code display the name of the same row but mangled with absolute and relative
counts.

7 Iterators and ranges
Ranging a mtable triggers a complex look up mechanism where the arguments will be interpreted in vari-
ous ways as described in the method :range_of, itself based on the methods :index_of and :index.
The number of rows selected by a mtable range can be computed by the :length_of method, which
accepts an extra number of turns to consider in the calculation.

The mtable iterators are created by the method :iter, based on the method :range_of as mentioned in
its description and includes an extra number of turns as for the method :length_of, and a direction 1

(forward) or −1 (backward) for the iteration.

The method :foreach uses the iterator returned by :iter with a range as its sole argument to loop over
the rows where to apply the predicate before executing the action. The methods :select, :deselect,
:filter, :insert, and :remove are all based directly or indirectly on the :foreach method. Hence,
to iterate backward over a mtable range, these methods have to use either its list form or a numerical
range. For example the invocation tbl:foreach(\r −> print(r.name), {−2, 2, nil, −1}) will
iterate backward over the entire mtable excluding the first and last rows, equivalently to the invocation
tbl:foreach(\r −> print(r.name), −2..2..−1).

The following example shows how to access to the rows with the :foreach method:

local mtable in MAD

local tbl = mtable { {’name’}, ’x’, ’y’ }

+ { ’p11’, 1.1, 1.2 }

+ { ’p12’, 2.1, 2.2 }

+ { ’p13’, 2.1, 3.2 }

+ { ’p11’, 3.1, 4.2 }

local act = \r −> print(r.name, r.y)

tbl:foreach(act, −2..2..−1)
−− display: p13 3.2

! p12 2.2

tbl:foreach(act, "p11[1]/p11[2]")

−− display: p11 1.2

! p12 2.2

! p13 3.2

! p11 4.2

tbl:foreach{action=act, range="p11[1]/p13"}

−− display: p11 1.2

! p12 2.2

8. EXAMPLES 80

! p13 3.2

tbl:foreach{action=act, pattern="[^1]$"}

−− display: p12 2.2

! p13 3.2

local act = \r −> print(r.name, r.y, r.is_selected)

tbl:select{pattern="p.1"}:foreach{action=act, range="1/−1"}
−− display: p11 1.2 true

! p12 2.2 nil

! p13 3.2 nil

! p11 4.2 true

8 Examples
8.1 Creating a MTable
The following example shows how the track command, i.e. self hereafter, creates its MTable:

local header = { −− extra attributes to save in track headers

’direction’, ’observe’, ’implicit’, ’misalign’, ’deltap’, ’lost’ }

local function make_mtable (self, range, nosave)

local title, dir, observe, implicit, misalign, deltap, savemap in self

local sequ, nrow = self.sequence, nosave and 0 or 16

return mtable(sequ.name, { −− keep column order!

type=’track’, title=title, header=header,

direction=dir, observe=observe, implicit=implicit, misalign=misalign,

deltap=deltap, lost=0, range=range, reserve=nrow, __seq=sequ,

{’name’}, ’kind’, ’s’, ’l’, ’id’, ’x’, ’px’, ’y’, ’py’, ’t’, ’pt’,

’slc’, ’turn’, ’tdir’, ’eidx’, ’status’, savemap and ’__map’ or nil })

end

8.2 Extending a MTable
The following example shows how to extend the MTable created by a twiss command with the elements
tilt, angle and integrated strengths from the attached sequence:

−− The prelude creating the sequence seq is omitted.

local tws = twiss { sequence=seq, method=4, cofind=true }

local is_integer in MAD.typeid

tws:addcol(’angle’, \ri => −− add angle column

local idx = tws[ri].eidx

return is_integer(idx) and tws.__seq[idx].angle or 0 end)

:addcol(’tilt’, \ri => −− add tilt column

local idx = tws[ri].eidx

return is_integer(idx) and tws.__seq[idx].tilt or 0 end)

for i=1,6 do −− add kil and kisl columns

tws:addcol(’k’..i−1..’l’, \ri =>

local idx = tws[ri].eidx

if not is_integer(idx) then return 0 end −− implicit drift

8. EXAMPLES 81

local elm = tws.__seq[idx]

return (elm[’k’..i−1] or 0)*elm.l + ((elm.knl or {})[i] or 0)

end)

:addcol(’k’..i−1..’sl’, \ri =>

local idx = tws[ri].eidx

if not is_integer(idx) then return 0 end −− implicit drift

local elm = tws.__seq[idx]

return (elm[’k’..i−1..’s’] or 0)*elm.l + ((elm.ksl or {})[i] or 0)

end)

end

local cols = {’name’, ’kind’, ’s’, ’l’, ’angle’, ’tilt’,

’x’, ’px’, ’y’, ’py’, ’t’, ’pt’,

’beta11’, ’beta22’, ’alfa11’, ’alfa22’, ’mu1’, ’mu2’, ’dx’, ’ddx’,

’k1l’, ’k2l’, ’k3l’, ’k4l’, ’k1sl’, ’k2sl’, ’k3sl’, ’k4sl’}

tws:write("twiss", cols) −− write header and columns to file twiss.tfs

Hopefully, the physics module provides the function melmcol(mtbl, cols) to achieve the same task
easily:

−− The prelude creating the sequence seq is omitted.

local tws = twiss { sequence=seq, method=4, cofind=true }

−− Add element properties as columns

local melmcol in MAD.gphys

local melmcol(tws, {’angle’, ’tilt’, ’k1l’ , ’k2l’ , ’k3l’ , ’k4l’,

’k1sl’, ’k2sl’, ’k3sl’, ’k4sl’})

−− write TFS table

tws:write("twiss", {

’name’, ’kind’, ’s’, ’l’, ’angle’, ’tilt’,

’x’, ’px’, ’y’, ’py’, ’t’, ’pt’,

’beta11’, ’beta22’, ’alfa11’, ’alfa22’, ’mu1’, ’mu2’, ’dx’, ’ddx’,

’k1l’, ’k2l’, ’k3l’, ’k4l’, ’k1sl’, ’k2sl’, ’k3sl’, ’k4sl’})

Chapter 9. MADX

1 Environment
2 Importing Sequences
3 Converting Scripts
4 Converting Macros

82

Part II

Commands

83

Chapter 10. Introduction

84

Chapter 11. Survey

The survey command provides a simple interface to the geometric tracking code.1 The geometric track-
ing can be used to place the elements of a sequence in the global reference system.

1 Command synopsis

Figure 11.1: Synopsis of the survey command with default setup.

mtbl, mflw [, eidx] = survey {

sequence=sequ, −− sequence (required)

range=nil, −− range of tracking (or sequence.range)

dir=1, −− s-direction of tracking (1 or -1)

s0=0, −− initial s-position offset [m]

X0=0, −− initial coordinates x, y, z [m]

A0=0, −− initial angles theta, phi, psi [rad] or matrix W0

nturn=1, −− number of turns to track

nstep=-1, −− number of elements to track

nslice=1, −− number of slices (or weights) for each element

implicit=false, −− slice implicit elements too (e.g. plots)

misalign=false, −− consider misalignment

save=true, −− create mtable and save results

title=nil, −− title of mtable (default seq.name)

observe=0, −− save only in observed elements (every n turns)

savesel=fnil, −− save selector (predicate)

savemap=false, −− save the orientation matrix W in the column __map

atentry=fnil, −− action called when entering an element

atslice=fnil, −− action called after each element slices

atexit=fnil, −− action called when exiting an element

atsave=fnil, −− action called when saving in mtable

atdebug=fnil, −− action called when debugging the element maps

info=nil, −− information level (output on terminal)

debug=nil, −− debug information level (output on terminal)

usrdef=nil, −− user defined data attached to the mflow

mflow=nil, −− mflow, exclusive with other attributes except nstep

}

The survey command format is summarized in Figure 11.1, including the default setup of the attributes.
The survey command supports the following attributes:

sequence The sequence to survey. (no default, required).
Example: sequence = lhcb1.

range A range specifying the span of the sequence survey. If no range is provided, the com-
mand looks for a range attached to the sequence, i.e. the attribute seq.range. (default:
nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

1MAD-NG implements only two tracking codes denominated the geometric and the dynamic tracking.

85

1. COMMAND SYNOPSIS 86

dir The s-direction of the tracking: 1 forward, −1 backward. (default: 1).
Example: dir = −1.

s0 A number specifying the initial s-position offset. (default: 0 [m]).
Example: s0 = 5000.

X0 A mappable specifying the initial coordinates {x,y,z}. (default: 0 [m]).
Example: X0 = { x=100, y=−50 }

A0 A mappable specifying the initial angles theta, phi and psi or an orientation matrix
W0.2 (default: 0 [rad]).
Example: A0 = { theta=deg2rad(30) }

nturn A number specifying the number of turn to track. (default: 1).
Example: nturn = 2.

nstep A number specifying the number of element to track. A negative value will track all
elements. (default: −1).
Example: nstep = 1.

nslice A number specifying the number of slices or an iterable of increasing relative positions
or a callable (elm, mflw, lw) returning one of the two previous kind of positions to
track in the elements. The arguments of the callable are in order, the current element,
the tracked map flow, and the length weight of the step. This attribute can be locally
overridden by the element. (default: 1).
Example: nslice = 5.

implicit A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting.
(default: false).
Example: implicit = true.

misalign A logical indicating that misalignment must be considered. (default: false).
Example: implicit = true.

save A logical specifying to create a mtable and record tracking information at the observation
points. The save attribute can also be a string specifying saving positions in the observed
elements: "atentry", "atslice", "atexit" (i.e. true), "atbound" (i.e. entry and
exit), "atbody" (i.e. slices and exit) and "atall". (default:true).
Example: save = false.

title A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "Survey around IP5".

observe A number specifying the observation points to consider for recording the tracking in-
formation. A zero value will consider all elements, while a positive value will consider
selected elements only, checked with method :is_observed, every observe> 0 turns.
(default: 0).
Example: observe = 1.

savesel A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for ob-
servation, i.e. the element is discarded if the predicate returns false. The arguments are
in order, the current element, the tracked map flow, the length weight of the slice and the

2An orientation matrix can be obtained from the 3 angles with W=matrix(3):rotzxy(−phi,theta,psi).

1. COMMAND SYNOPSIS 87

slice index. (default: fnil)
Example: savesel = \e -> mylist[e.name] ~= nil.

savemap A logical indicating to save the orientation matrix W in the column __map of the mtable.
(default: false).
Example: savemap = true.

atentry A callable (elm, mflw, 0, −1) invoked at element entry. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −1. (default:
fnil).
Example: atentry = myaction.

atslice A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in
order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil).
Example: atslice = myaction.

atexit A callable (elm, mflw, 0, −2) invoked at element exit. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −2. (default:
fnil).
Example: atexit = myaction.

atsave A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit.
The arguments are in order, the current element, the tracked map flow, the length weight
of the slice and the slice index. (default: fnil).
Example: atsave = myaction.

atdebug A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element
maps during the integration steps, i.e. within the slices. The arguments are in order, the
current element, the tracked map flow, the length weight of the integration step and a
string specifying a debugging message, e.g. "map_name:0" for entry and ":1" for exit.
If the level debug > 4 and atdebug is not specified, the default function mdump is used.
In some cases, extra arguments could be passed to the method. (default: fnil).
Example: atdebug = myaction.

info A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

usrdef Any user defined data that will be attached to the tracked map flow, which is internally
passed to the elements method :survey and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow A mflow containing the current state of a survey command. If a map flow is provided,
all attributes are discarded except nstep, info and debug, as the command was already
set up upon its creation. (default: nil).
Example: mflow = mflow0.

The survey command returns the following objects in this order:

2. SURVEY MTABLE 88

mtbl A mtable corresponding to the TFS table of the survey command.

mflw A mflow corresponding to the map flow of the survey command.

eidx An optional number corresponding to the last surveyed element index in the sequence
when nstep was specified and stopped the command before the end of the range.

2 Survey mtable
The survey command returns a mtable where the information described hereafter is the default list of
fields written to the TFS files.3

The header of the mtable contains the fields in the default order:

name The name of the command that created the mtable, e.g. "survey".

type The type of the mtable, i.e. "survey".

title The value of the command attribute title.

origin The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".

date The date of the creation of the mtable, e.g. "27/05/20".

time The time of the creation of the mtable, e.g. "19:18:36".

refcol The reference column for the mtable dictionnary, e.g. "name".

direction The value of the command attribute dir.

observe The value of the command attribute observe.

implicit The value of the command attribute implicit.

misalign The value of the command attribute misalign.

range The value of the command attribute range.4

__seq The sequence from the command attribute sequence.5

The core of the mtable contains the columns in the default order:

name The name of the element.

kind The kind of the element.

s The s-position at the end of the element slice.

l The length from the start of the element to the end of the element slice.

angle The angle from the start of the element to the end of the element slice.

tilt The tilt of the element.

x The global coordinate x at the s-position.

3The output of mtable in TFS files can be fully customized by the user.
4This field is not saved in the TFS table by default.
5Fields and columns starting with two underscores are protected data and never saved to TFS files.

3. GEOMETRICAL TRACKING 89

y The global coordinate y at the s-position.

z The global coordinate z at the s-position.

theta The global angle θ at the s-position.

phi The global angle φ at the s-position.

psi The global angle ψ at the s-position.

slc The slice number ranging from −2 to nslice.

turn The turn number.

tdir The t-direction of the tracking in the element.

eidx The index of the element in the sequence.

__map The orientation matrix at the s-position.5

3 Geometrical tracking
The Figure 11.2 presents the scheme of the geometrical tracking through an element sliced with nslice=3.
The actions atentry (index −1), atslice (indexes 0..3), and atexit (index −2) are reversed between
the forward tracking (dir=1 with increasing s-position) and the backward tracking (dir=−1 with de-
creasing s-position). By default, the action atsave is attached to the exit slice, and hence it is also
reversed in the backward tracking.

Figure 11.2: Geometrical tracking with slices.

P-1P thick { }

Mthick{0} {1} {2} {3}
{-1} {-2}

atslice atslice atslice atslice
Mthick Mthick

atentry atexit

M-1thick M-1thick M-1thick{3} {2} {1} {0}

atsave

atsave
atexit atentry

s > s0
Forward

s < s0
Backward

{-2} {-1}

tilt-1tilt tilted frame

element frame align2align1

global frame

3.1 Slicing
The slicing can take three different forms:

– A number of the form nslice=N that specifies the number of slices with indexes 0..N . This
defines a uniform slicing with slice length lslice = lelem/N .

– An iterable of the form nslice={lw1,lw2,..,lwN} with
∑

i lwi = 1 that specifies the fraction
of length of each slice with indexes 0..N where N=#nslice. This defines a non-uniform slicing
with a slice length of li = lwi × lelem.

4. EXAMPLES 90

– A callable (elm, mflw, lw) returning one of the two previous forms of slicing. The arguments
are in order, the current element, the tracked map flow, and the length weight of the step, which
should allow to return a user-defined element-specific slicing.

The surrounding P and P−1 maps represent the patches applied around the body of the element to change
the frames, after the atentry and before the atexit actions:

– The misalignment of the element to move from the global frame to the element frame if the
command attribute misalign is set to true.

– The tilt of the element to move from the element frame to the titled frame if the element attribute
tilt is non-zero. The atslice actions take place in this frame.

These patches do not change the global frame per se, but they may affect the way that other components
change the global frame, e.g. the tilt combined with the angle of a bending element.

3.2 Sub-elements
The survey command takes sub-elements into account, mainly for compatibility with the track com-
mand. In this case, the slicing specification is taken between sub-elements, e.g. 3 slices with 2 sub-
elements gives a final count of 9 slices. It is possible to adjust the number of slices between sub-elements
with the third form of slicing specifier, i.e. by using a callable where the length weight argument is
between the current (or the end of the element) and the last sub-elements (or the start of the element).

4 Examples
TODO

Chapter 12. Track

The track command provides a simple interface to the dynamic tracking code.1 The dynamic tracking
can be used to track the particles in the local reference system while running through the elements of a
sequence. The particles coordinates can be expressed in the global reference system by changing from
the local to the global frames using the information delivered by the survey command.

1 Command synopsis
The track command format is summarized in Figure 12.1, including the default setup of the attributes.
The track command supports the following attributes:

sequence The sequence to track. (no default, required).
Example: sequence = lhcb1.

beam The reference beam for the tracking. If no beam is provided, the command looks for a
beam attached to the sequence, i.e. the attribute seq.beam.2 (default: nil).
Example: beam = beam ’lhcbeam’ { beam-attributes }.

range A range specifying the span of the sequence track. If no range is provided, the command
looks for a range attached to the sequence, i.e. the attribute seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

dir The s-direction of the tracking: 1 forward, −1 backward. (default: 1).
Example: dir = −1.

s0 A number specifying the initial s-position offset. (default: 0 [m]).
Example: s0 = 5000.

X0 A mappable (or a list of mappable) specifying initial coordinates {x,px,y,py,t,pt},
damap, or beta block for each tracked object, i.e. particle or damap. The beta blocks are
converted to damaps, while the coordinates are converted to damaps only if mapdef is
specified, but both will use mapdef to setup the damap constructor. Each tracked object
may also contain a beam to override the reference beam, and a logical nosave to discard
this object from being saved in the mtable. (default: 0).
Example: X0 = { x=1e−3, px=−1e−5 }.

O0 A mappable specifying initial coordinates {x,px,y,py,t,pt} of the reference orbit
around which X0 definitions take place. If it has the attribute cofind == true, it will
be used as an initial guess to search for the reference closed orbit. (default: 0).
Example: O0 = { x=1e−4, px=−2e−5, y=−2e−4, py=1e−5 }.

deltap A number (or list of number) specifying the initial δp to convert (using the beam) and
add to the pt of each tracked particle or damap. (default: nil).
Example: s0 = 5000.

nturn A number specifying the number of turn to track. (default: 1).
Example: nturn = 2.

1MAD-NG implements only two tracking codes denominated the geometric and the dynamic tracking.
2Initial coordinates X0 may override it by providing per particle or damap beam.

91

1. COMMAND SYNOPSIS 92

Figure 12.1: Synopsis of the track command with default setup.

mtbl, mflw [, eidx] = track {

sequence=sequ, −− sequence (required)

beam=nil, −− beam (or sequence.beam, required)

range=nil, −− range of tracking (or sequence.range)

dir=1, −− s-direction of tracking (1 or -1)

s0=0, −− initial s-position offset [m]

X0=0, −− initial coordinates (or damap(s), or beta block(s))

O0=0, −− initial coordinates of reference orbit

deltap=nil, −− initial deltap(s)

nturn=1, −− number of turns to track

nstep=-1, −− number of elements to track

nslice=1, −− number of slices (or weights) for each element

mapdef=false, −− setup for damap (or list of, true => {})

method=2, −− method or order for integration (1 to 8)

model=’TKT’, −− model for integration (’DKD’ or ’TKT’)

ptcmodel=nil, −− use strict PTC thick model (override option)

implicit=false, −− slice implicit elements too (e.g. plots)

misalign=false, −− consider misalignment

fringe=true, −− enable fringe fields (see element.flags.fringe)

radiate=false, −− radiate at slices

totalpath=false, −− variable ’t’ is the totalpath

save=true, −− create mtable and save results

title=nil, −− title of mtable (default seq.name)

observe=1, −− save only in observed elements (every n turns)

savesel=fnil, −− save selector (predicate)

savemap=false, −− save damap in the column __map

atentry=fnil, −− action called when entering an element

atslice=fnil, −− action called after each element slices

atexit=fnil, −− action called when exiting an element

ataper=fnil, −− action called when checking for aperture

atsave=fnil, −− action called when saving in mtable

atdebug=fnil, −− action called when debugging the element maps

info=nil, −− information level (output on terminal)

debug=nil, −− debug information level (output on terminal)

usrdef=nil, −− user defined data attached to the mflow

mflow=nil, −− mflow, exclusive with other attributes except nstep

}

nstep A number specifying the number of element to track. A negative value will track all
elements. (default: −1).
Example: nstep = 1.

nslice A number specifying the number of slices or an iterable of increasing relative positions
or a callable (elm, mflw, lw) returning one of the two previous kind of positions to
track in the elements. The arguments of the callable are in order, the current element,
the tracked map flow, and the length weight of the step. This attribute can be locally

1. COMMAND SYNOPSIS 93

overridden by the element. (default: 1).
Example: nslice = 5.

mapdef A logical or a damap specification as defined by the DAmap module to track DA maps
instead of particles coordinates. A value of true is equivalent to invoke the damap
constructor with {} as argument. This attribute allows to track DA maps instead of
particles. (default: nil).
Example: mapdef = { xy=2, pt=5 }.

method A number specifying the order of integration from 1 to 8, or a string specifying a spe-
cial method of integration. Odd orders are rounded to the next even order to select the
corresponding Yoshida or Boole integration schemes. The special methods are simple

(equiv. to DKD order 2), collim (equiv. to MKM order 2), and teapot (Teapot splitting
order 2). (default: 2).
Example: method = ’teapot’.

model A string specifying the integration model, either ’DKD’ for Drift-Kick-Drift thin lens
integration or ’TKT’ for Thick-Kick-Thick thick lens integration.3 (default: ’TKT’)
Example: model = ’DKD’.

ptcmodel A logical indicating to use strict PTC model.4 (default: nil)
Example: ptcmodel = true.

implicit A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting.
(default: false).
Example: implicit = true.

misalign A logical indicating that misalignment must be considered. (default: false).
Example: misalign = true.

fringe A logical indicating that fringe fields must be considered or a number specifying a bit
mask to apply to all elements fringe flags defined by the element module. The value true
is equivalent to the bit mask −1, i.e. allow all elements (default) fringe fields. (default:
true).
Example: fringe = false.

radiate A logical enabling or disabling the radiation or a string specifying the type of radiation:
’average’ or ’quantum’. The value true is equivalent to ’average’. The value
’quantum+photon’ enables the tracking of emitted photons. (default: false).
Example: radiate = ’quantum’.

totalpath A logical indicating to use the totalpath for the fifth variable ’t’ instead of the local
path. (default: false).
Example: totalpath = true.

save A logical specifying to create a mtable and record tracking information at the observation
points. The save attribute can also be a string specifying saving positions in the observed
elements: "atentry", "atslice", "atexit" (i.e. true), "atbound" (i.e. entry and
exit), "atbody" (i.e. slices and exit) and "atall". (default: true).
Example: save = false.

3The TKT scheme (Yoshida) is automatically converted to the MKM scheme (Boole) when approriate.
4In all cases, MAD-NG uses PTC setup time=true, exact=true.

1. COMMAND SYNOPSIS 94

title A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "track around IP5".

observe A number specifying the observation points to consider for recording the tracking in-
formation. A zero value will consider all elements, while a positive value will consider
selected elements only, checked with method :is_observed, every observe> 0 turns.
(default: 1).
Example: observe = 1.

savesel A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for ob-
servation, i.e. the element is discarded if the predicate returns false. The arguments are
in order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil)
Example: savesel = \e -> mylist[e.name] ~= nil.

savemap A logical indicating to save the damap in the column __map of the mtable. (default:
false).
Example: savemap = true.

atentry A callable (elm, mflw, 0, −1) invoked at element entry. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −1. (default:
fnil).
Example: atentry = myaction.

atslice A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in
order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil).
Example: atslice = myaction.

atexit A callable (elm, mflw, 0, −2) invoked at element exit. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −2. (default:
fnil).
Example: atexit = myaction.

ataper A callable (elm, mflw, lw, islc) invoked at element aperture checks, by default at
last slice. The arguments are in order, the current element, the tracked map flow, the
length weight of the slice and the slice index. If a particle or a damap hits the aperture,
then its status = "lost" and it is removed from the list of tracked items. (default:
fnil).
Example: ataper = myaction.

atsave A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit.
The arguments are in order, the current element, the tracked map flow, the length weight
of the slice and the slice index. (default: fnil).
Example: atsave = myaction.

atdebug A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element
maps during the integration steps, i.e. within the slices. The arguments are in order, the
current element, the tracked map flow, the length weight of the integration step and a
string specifying a debugging message, e.g. "map_name:0" for entry and ":1" for exit.
If the level debug > 4 and atdebug is not specified, the default function mdump is used.
In some cases, extra arguments could be passed to the method. (default: fnil).
Example: atdebug = myaction.

2. TRACK MTABLE 95

info A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

usrdef Any user defined data that will be attached to the tracked map flow, which is internally
passed to the elements method :track and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow A mflow containing the current state of a track command. If a map flow is provided, all
attributes are discarded except nstep, info and debug, as the command was already set
up upon its creation. (default: nil).
Example: mflow = mflow0.

The track command returns the following objects in this order:

mtbl A mtable corresponding to the TFS table of the track command.

mflw A mflow corresponding to the map flow of the track command.

eidx An optional number corresponding to the last tracked element index in the sequence
when nstep was specified and stopped the command before the end of the range.

2 Track mtable
The track command returns a mtable where the information described hereafter is the default list of
fields written to the TFS files.5

The header of the mtable contains the fields in the default order:

name The name of the command that created the mtable, e.g. "track".

type The type of the mtable, i.e. "track".

title The value of the command attribute title.

origin The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".

date The date of the creation of the mtable, e.g. "27/05/20".

time The time of the creation of the mtable, e.g. "19:18:36".

refcol The reference column for the mtable dictionnary, e.g. "name".

direction The value of the command attribute dir.

observe The value of the command attribute observe.

implicit The value of the command attribute implicit.

misalign The value of the command attribute misalign.

5The output of mtable in TFS files can be fully customized by the user.

3. DYNAMICAL TRACKING 96

deltap The value of the command attribute deltap.

lost The number of lost particle(s) or damap(s).

range The value of the command attribute range.6

__seq The sequence from the command attribute sequence.7

The core of the mtable contains the columns in the default order:

name The name of the element.

kind The kind of the element.

s The s-position at the end of the element slice.

l The length from the start of the element to the end of the element slice.

id The index of the particle or damap as provided in X0.

x The local coordinate x at the s-position.

px The local coordinate px at the s-position.

y The local coordinate y at the s-position.

py The local coordinate py at the s-position.

t The local coordinate t at the s-position.

pt The local coordinate pt at the s-position.

pc The reference beam P0c in which pt is expressed.

slc The slice index ranging from −2 to nslice.

turn The turn number.

tdir The t-direction of the tracking in the element.

eidx The index of the element in the sequence.

status The status of the particle or damap.

__map The damap at the s-position.3

3 Dynamical tracking
The Figure 12.2 presents the scheme of the dynamical tracking through an element sliced with nslice=3.
The actions atentry (index −1), atslice (indexes 0..3), and atexit (index −2) are reversed between
the forward tracking (dir=1 with increasing s-position) and the backward tracking (dir=−1 with de-
creasing s-position). By default, the action atsave is attached to the exit slice and the action ataper is
attached to the last slice just before exit, i.e. to the last atslice action in the tilted frame, and hence they
are also both reversed in the backward tracking.

6This field is not saved in the TFS table by default.
7Fields and columns starting with two underscores are protected data and never saved to TFS files.

3. DYNAMICAL TRACKING 97

Figure 12.2: Dynamical tracking with slices.

P-1P thick { }

Mthick{0} {1} {2} {3}
{-1} {-2}

atslice atslice atslice atslice
Mthick Mthick

atentry atexit

M-1thick M-1thick M-1thick{3} {2} {1} {0}

atsave

atsave
atexit atentry

s > s0
Forward

s < s0
Backward

{-2} {-1}

map frame

tilt-1tilt tilted frame

element frame align2align1

global frame

tilt(k,ks) tilt-1(k,ks)

ataper

ataper

3.1 Slicing
The slicing can take three different forms:

– A number of the form nslice=N that specifies the number of slices with indexes 0..N . This
defines a uniform slicing with slice length lslice = lelem/N .

– An iterable of the form nslice={lw1,lw2,..,lwN} with
∑

i lwi = 1 that specifies the fraction
of length of each slice with indexes 0..N where N=#nslice. This defines a non-uniform slicing
with a slice length of li = lwi × lelem.

– A callable (elm, mflw, lw) returning one of the two previous forms of slicing. The arguments
are in order, the current element, the tracked map flow, and the length weight of the step, which
should allow to return a user-defined element-specific slicing.

The surrounding P and P−1 maps represent the patches applied around the body of the element to change
the frames, after the atentry and before the atexit actions:

– The misalignment of the element to move from the global frame to the element frame if the
command attribute misalign is set to true.

– The tilt of the element to move from the element frame to the titled frame if the element attribute
tilt is non-zero. The atslice actions take place in this frame.

The map frame is specific to some maps while tracking through the body of the element. In principle,
the map frame is not visible to the user, only to the integrator. For example, a quadrupole with both k1

and k1s defined will have a map frame tilted by the angle α = −1
2 tan−1 k1s

k1 attached to its thick map,
i.e. the focusing matrix handling only k̃1 =

√
k12 + k1s2, but not to its thin map, i.e. the kick from all

multipoles (minus k1 and k1s) expressed in the tilted frame, during the integration steps.

3.2 Sub-elements
The track command takes sub-elements into account. In this case, the slicing specification is taken
between sub-elements, e.g. 3 slices with 2 sub-elements gives a final count of 9 slices. It is possible to
adjust the number of slices between sub-elements with the third form of slicing specifier, i.e. by using a
callable where the length weight argument is between the current (or the end of the element) and the last
sub-elements (or the start of the element).

4. EXAMPLES 98

3.3 Particles status
The track command initializes the map flow with particles or damaps or both, depending on the at-
tributes X0 and mapdef. The status attribute of each particle or damap will be set to one of "Xset",
"Mset", and "Aset" to track the origin of its initialization: coordinates, damap, or normalizing damap
(normal form or beta block). After the tracking, some particles or damaps may have the status "lost"
and their number being recorded in the counter lost from TFS table header. Other commands like
cofind or twiss may add extra tags to the status value, like "stable", "unstable" and "singular".

4 Examples
TODO

Chapter 13. Cofind

The cofind command (i.e. closed orbit finder) provides a simple interface to find a closed orbit using
the Newton algorithm on top of the track command.

1 Command synopsis
The cofind command format is summarized in Figure 13.1, including the default setup of the attributes.
Most of these attributes are set to nil by default, meaning that cofind relies on the track command
defaults. The cofind command supports the following attributes:

sequence The sequence to track. (no default, required).
Example: sequence = lhcb1.

beam The reference beam for the tracking. If no beam is provided, the command looks for a
beam attached to the sequence, i.e. the attribute seq.beam.1 (default: nil).
Example: beam = beam ’lhcbeam’ { beam-attributes }.

range A range specifying the span of the sequence track. If no range is provided, the command
looks for a range attached to the sequence, i.e. the attribute seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

dir The s-direction of the tracking: 1 forward, −1 backward. (default: nil).
Example: dir = −1.

s0 A number specifying the initial s-position offset. (default: nil).
Example: s0 = 5000.

X0 A mappable (or a list of mappable) specifying initial coordinates {x,px,y,py, t,pt},
damap, or beta block for each tracked object, i.e. particle or damap. The beta blocks are
converted to damaps, while the coordinates are converted to damaps only if mapdef is
specified, but both will use mapdef to setup the damap constructor. Each tracked object
may also contain a beam to override the reference beam, and a logical nosave to discard
this object from being saved in the mtable. (default: nil).
Example: X0 = { x=1e−3, px=−1e−5 }.

O0 A mappable specifying initial coordinates {x,px,y,py,t,pt} of the reference orbit
around which X0 definitions take place. If it has the attribute cofind == true, it will
be used as an initial guess to search for the reference closed orbit. (default: 0).
Example: O0 = { x=1e−4, px=−2e−5, y=−2e−4, py=1e−5 }.

deltap A number (or list of number) specifying the initial δp to convert (using the beam) and
add to the pt of each tracked particle or damap. (default:nil).
Example: s0 = 5000.

nturn A number specifying the number of turn to track. (default: nil).
Example: nturn = 2.

nstep A number specifying the number of element to track. A negative value will track all
elements. (default: nil).
Example: nstep = 1.

1Initial coordinates X0 may override it by providing a beam per particle or damap.

99

1. COMMAND SYNOPSIS 100

Figure 13.1: Synopsis of the cofind command with default setup.

mtbl, mflw = cofind {

sequence=sequ, −− sequence (required)

beam=nil, −− beam (or sequence.beam, required)

range=nil, −− range of tracking (or sequence.range)

dir=nil, −− s-direction of tracking (1 or -1)

s0=nil, −− initial s-position offset [m]

X0=nil, −− initial coordinates (or damap, or beta block)

O0=nil, −− initial coordinates of reference orbit

deltap=nil, −− initial deltap(s)

nturn=nil, −− number of turns to track

nslice=nil, −− number of slices (or weights) for each element

mapdef=true, −− setup for damap (or list of, true => {})

method=nil, −− method or order for integration (1 to 8)

model=nil, −− model for integration (’DKD’ or ’TKT’)

ptcmodel=nil, −− use strict PTC thick model (override option)

implicit=nil, −− slice implicit elements too (e.g. plots)

misalign=nil, −− consider misalignment

fringe=nil, −− enable fringe fields (see element.flags.fringe)

radiate=nil, −− radiate at slices

totalpath=nil, −− variable ’t’ is the totalpath

save=false, −− create mtable and save results

title=nil, −− title of mtable (default seq.name)

observe=nil, −− save only in observed elements (every n turns)

savesel=nil, −− save selector (predicate)

savemap=nil, −− save damap in the column __map

atentry=nil, −− action called when entering an element

atslice=nil, −− action called after each element slices

atexit=nil, −− action called when exiting an element

ataper=nil, −− action called when checking for aperture

atsave=nil, −− action called when saving in mtable

atdebug=fnil, −− action called when debugging the element maps

codiff=1e-10, −− finite differences step for jacobian

coiter=20, −− maximum number of iterations

cotol=1e-8, −− closed orbit tolerance (i.e. |dX|)

X1=0, −− optional final coordinates translation

info=nil, −− information level (output on terminal)

debug=nil, −− debug information level (output on terminal)

usrdef=nil, −− user defined data attached to the mflow

mflow=nil, −− mflow, exclusive with other attributes

}

nslice A number specifying the number of slices or an iterable of increasing relative positions
or a callable (elm, mflw, lw) returning one of the two previous kind of positions to
track in the elements. The arguments of the callable are in order, the current element,
the tracked map flow, and the length weight of the step. This attribute can be locally
overridden by the element. (default: nil).

1. COMMAND SYNOPSIS 101

Example: nslice = 5.

mapdef A logical or a damap specification as defined by the DAmap module to track DA maps
instead of particles coordinates. A value of true is equivalent to invoke the damap
constructor with {} as argument. A value of false or nil disable the use of damaps
and force cofind to replace each particles or damaps by seven particles to approximate
their Jacobian by finite difference. (default: true).
Example: mapdef = { xy=2, pt=5 }.

method A number specifying the order of integration from 1 to 8, or a string specifying a spe-
cial method of integration. Odd orders are rounded to the next even order to select the
corresponding Yoshida or Boole integration schemes. The special methods are simple

(equiv. to DKD order 2), collim (equiv. to MKM order 2), and teapot (Teapot splitting
order 2). (default: nil).
Example: method = ’teapot’.

model A string specifying the integration model, either ’DKD’ for Drift-Kick-Drift thin lens
integration or ’TKT’ for Thick-Kick-Thick thick lens integration.2 (default: nil)
Example: model = ’DKD’.

ptcmodel A logical indicating to use strict PTC model.3 (default: nil)
Example: ptcmodel = true.

implicit A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting.
(default: nil).
Example: implicit = true.

misalign A logical indicating that misalignment must be considered. (default: nil).
Example: misalign = true.

fringe A logical indicating that fringe fields must be considered or a number specifying a bit
mask to apply to all elements fringe flags defined by the element module. The value true
is equivalent to the bit mask −1, i.e. allow all elements (default) fringe fields. (default:
nil).
Example: fringe = false.

radiate A logical enabling or disabling the radiation or the string specifying the ’average’

type of radiation. The value true is equivalent to ’average’ and the value ’quantum’
is converted to ’average’. (default: nil).
Example: radiate = ’average’.

totalpath A logical indicating to use the totalpath for the fifth variable ’t’ instead of the local
path. (default: nil).
Example: totalpath = true.

save A logical specifying to create a mtable and record tracking information at the observation
points. The save attribute can also be a string specifying saving positions in the observed
elements: "atentry", "atslice", "atexit" (i.e. true), "atbound" (i.e. entry and
exit), "atbody" (i.e. slices and exit) and "atall". (default: false).
Example: save = false.

2The TKT scheme (Yoshida) is automatically converted to the MKM scheme (Boole) when approriate.
3In all cases, MAD-NG uses PTC setup time=true, exact=true.

1. COMMAND SYNOPSIS 102

title A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "track around IP5".

observe A number specifying the observation points to consider for recording the tracking in-
formation. A zero value will consider all elements, while a positive value will consider
selected elements only, checked with method :is_observed, every observe> 0 turns.
(default: nil).
Example: observe = 1.

savesel A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for ob-
servation, i.e. the element is discarded if the predicate returns false. The arguments are
in order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: nil)
Example: savesel = \e -> mylist[e.name] ~= nil.

savemap A logical indicating to save the damap in the column __map of the mtable. (default:
nil).
Example: savemap = true.

atentry A callable (elm, mflw, 0, −1) invoked at element entry. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −1. (default:
nil).
Example: atentry = myaction.

atslice A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in
order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: nil).
Example: atslice = myaction.

atexit A callable (elm, mflw, 0, −2) invoked at element exit. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −2. (default:
nil).
Example: atexit = myaction.

ataper A callable (elm, mflw, lw, islc) invoked at element aperture checks, by default at
last slice. The arguments are in order, the current element, the tracked map flow, the
length weight of the slice and the slice index. If a particle or a damap hits the aperture,
then its status = "lost" and it is removed from the list of tracked items. (default:
fnil).
Example: ataper = myaction.

atsave A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit.
The arguments are in order, the current element, the tracked map flow, the length weight
of the slice and the slice index. (default: nil).
Example: atsave = myaction.

atdebug A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element
maps during the integration steps, i.e. within the slices. The arguments are in order, the
current element, the tracked map flow, the length weight of the integration step and a
string specifying a debugging message, e.g. "map_name:0" for entry and ":1" for exit.
If the level debug > 4 and atdebug is not specified, the default function mdump is used.
In some cases, extra arguments could be passed to the method. (default: fnil).
Example: atdebug = myaction.

2. COFIND MTABLE 103

codiff A number specifying the finite difference step to approximate the Jacobian when damaps
are disabled. If codiff is larger than 100×cotol, it will be adjusted to cotol/100 and
a warning will be emitted. (default: 1e−10).
Example: codiff = 1e−8.

coiter A number specifying the maximum number of iteration. If this threshold is reached, all
the remaining tracked objects are tagged as "unstable". (default: 20).
Example: coiter = 5.

cotol A number specifying the closed orbit tolerance. If all coordinates update of a particle or
a damap are smaller than cotol, then it is tagged as "stable". (default: 1e−8).
Example: cotol = 1e−6.

X1 A mappable specifying the coordinates {x,px,y,py,t,pt} to subtract to the final co-
ordinates of the particles or the damaps. (default: 0).
Example: X1 = { t=100, pt=10 }.

info A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

usrdef Any user defined data that will be attached to the tracked map flow, which is internally
passed to the elements method :track and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow A mflow containing the current state of a track command. If a map flow is provided, all
attributes are discarded except nstep, info and debug, as the command was already set
up upon its creation. (default: nil).
Example: mflow = mflow0.

The cofind command stops when all particles or damap are tagged as "stable", "unstable", "singular"
or "lost". The cofind command returns the following objects in this order:

mtbl A mtable corresponding to the TFS table of the track command where the status

column may also contain the new values "stable", "unstable" or "singular".

mflw A mflow corresponding to the map flow of the track command. The particles or damaps
status are tagged and ordered by "stable", "unstable", "singular", "lost" and
id.

2 Cofind mtable
The cofind command returns the track mtable unmodified except for the status column. The tracked
objects id will appear once per iteration at the $end marker, and other defined observation points if any,
until they are removed from the list of tracked objects.

3 Examples
TODO

Chapter 14. Twiss

The twiss command provides a simple interface to compute the optical functions around an orbit on top
of the track command, and the cofind command if the search for closed orbits is requested.

1 Command synopsis
The twiss command format is summarized in Figure 14.1, including the default setup of the attributes.
Most of these attributes are set to nil by default, meaning that twiss relies on the track and the cofind
commands defaults. The twiss command supports the following attributes:

sequence The sequence to track. (no default, required).
Example: sequence = lhcb1.

beam The reference beam for the tracking. If no beam is provided, the command looks for a
beam attached to the sequence, i.e. the attribute seq.beam.1 (default: nil).
Example: beam = beam ’lhcbeam’ { beam-attributes }.

range A range specifying the span of the sequence track. If no range is provided, the command
looks for a range attached to the sequence, i.e. the attribute seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

dir The s-direction of the tracking: 1 forward, −1 backward. (default: nil).
Example: dir = −1.

s0 A number specifying the initial s-position offset. (default: nil).
Example: s0 = 5000.

X0 A mappable (or a list of mappable) specifying initial coordinates {x,px,y,py, t,pt},
damap, or beta0 block for each tracked object, i.e. particle or damap. The beta0 blocks
are converted to damaps, while the coordinates are converted to damaps only if mapdef
is specified, but both will use mapdef to setup the damap constructor. A closed orbit will
be automatically searched for damaps built from coordinates. Each tracked object may
also contain a beam to override the reference beam, and a logical nosave to discard this
object from being saved in the mtable. (default: 0).
Example: X0 = { x=1e−3, px=−1e−5 }.

O0 A mappable specifying initial coordinates {x,px,y,py,t,pt} of the reference orbit
around which X0 definitions take place. If it has the attribute cofind == true, it will
be used as an initial guess to search for the reference closed orbit. (default: 0).
Example: O0 = { x=1e−4, px=−2e−5, y=−2e−4, py=1e−5 }.

deltap A number (or list of number) specifying the initial δp to convert (using the beam) and
add to the pt of each tracked particle or damap. (default:nil).
Example: s0 = 5000.

chrom A logical specifying to calculate the chromatic functions by finite different using an extra
δp = 1e−6. (default: false).
Example: chrom = true.

1Initial coordinates X0 may override it by providing a beam per particle or damap.

104

1. COMMAND SYNOPSIS 105

Figure 14.1: Synopsis of the twiss command with default setup.

mtbl, mflw [, eidx] = twiss {

sequence=sequ, −− sequence (required)

beam=nil, −− beam (or sequence.beam, required)

range=nil, −− range of tracking (or sequence.range)

dir=nil, −− s-direction of tracking (1 or -1)

s0=nil, −− initial s-position offset [m]

X0=nil, −− initial coordinates (or damap(s), or beta block(s))

O0=nil, −− initial coordinates of reference orbit

deltap=nil, −− initial deltap(s)

chrom=false, −− compute chromatic functions by finite difference

coupling=false, −− compute optical functions for non-diagonal modes

nturn=nil, −− number of turns to track

nstep=nil, −− number of elements to track

nslice=nil, −− number of slices (or weights) for each element

mapdef=true, −− setup for damap (or list of, true => {})

method=nil, −− method or order for integration (1 to 8)

model=nil, −− model for integration (’DKD’ or ’TKT’)

ptcmodel=nil, −− use strict PTC thick model (override option)

implicit=nil, −− slice implicit elements too (e.g. plots)

misalign=nil, −− consider misalignment

fringe=nil, −− enable fringe fields (see element.flags.fringe)

radiate=nil, −− radiate at slices

totalpath=nil, −− variable ’t’ is the totalpath

save=true, −− create mtable and save results

title=nil, −− title of mtable (default seq.name)

observe=0, −− save only in observed elements (every n turns)

savesel=nil, −− save selector (predicate)

savemap=nil, −− save damap in the column __map

atentry=nil, −− action called when entering an element

atslice=nil, −− action called after each element slices

atexit=nil, −− action called when exiting an element

ataper=nil, −− action called when checking for aperture

atsave=nil, −− action called when saving in mtable

atdebug=fnil, −− action called when debugging the element maps

codiff=nil, −− finite differences step for jacobian

coiter=nil, −− maximum number of iterations

cotol=nil, −− closed orbit tolerance (i.e. |dX|)

X1=nil, −− optional final coordinates translation

info=nil, −− information level (output on terminal)

debug=nil, −− debug information level (output on terminal)

usrdef=nil, −− user defined data attached to the mflow

mflow=nil, −− mflow, exclusive with other attributes

}

coupling A logical specifying to calculate the optical functions for coupling terms in the normal-
ized forms. (default: false).

1. COMMAND SYNOPSIS 106

Example: chrom = true.

nturn A number specifying the number of turn to track. (default: nil).
Example: nturn = 2.

nstep A number specifying the number of element to track. A negative value will track all
elements. (default: nil).
Example: nstep = 1.

nslice A number specifying the number of slices or an iterable of increasing relative positions
or a callable (elm, mflw, lw) returning one of the two previous kind of positions to
track in the elements. The arguments of the callable are in order, the current element,
the tracked map flow, and the length weight of the step. This attribute can be locally
overridden by the element. (default: nil).
Example: nslice = 5.

mapdef A logical or a damap specification as defined by the DAmap module to track DA maps
instead of particles coordinates. A value of true is equivalent to invoke the damap
constructor with {} as argument. A value of false or nil will be internally forced to
true for the tracking of the normalized forms. (default: true).
Example: mapdef = { xy=2, pt=5 }.

method A number specifying the order of integration from 1 to 8, or a string specifying a spe-
cial method of integration. Odd orders are rounded to the next even order to select the
corresponding Yoshida or Boole integration schemes. The special methods are simple

(equiv. to DKD order 2), collim (equiv. to MKM order 2), and teapot (Teapot splitting
order 2). (default: nil).
Example: method = ’teapot’.

model A string specifying the integration model, either ’DKD’ for Drift-Kick-Drift thin lens
integration or ’TKT’ for Thick-Kick-Thick thick lens integration.2 (default: nil)
Example: model = ’DKD’.

ptcmodel A logical indicating to use strict PTC model.3 (default: nil)
Example: ptcmodel = true.

implicit A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting.
(default: nil).
Example: implicit = true.

misalign A logical indicating that misalignment must be considered. (default: nil).
Example: misalign = true.

fringe A logical indicating that fringe fields must be considered or a number specifying a bit
mask to apply to all elements fringe flags defined by the element module. The value true
is equivalent to the bit mask −1, i.e. allow all elements (default) fringe fields. (default:
nil).
Example: fringe = false.

radiate A logical enabling or disabling the radiation or the string specifying the ’average’ type
of radiation during the closed orbit search. The value true is equivalent to ’average’

2The TKT scheme (Yoshida) is automatically converted to the MKM scheme (Boole) when approriate.
3In all cases, MAD-NG uses PTC setup time=true, exact=true.

1. COMMAND SYNOPSIS 107

and the value ’quantum’ is converted to ’average’. (default: nil).
Example: radiate = ’average’.

totalpath A logical indicating to use the totalpath for the fifth variable ’t’ instead of the local
path. (default: nil).
Example: totalpath = true.

save A logical specifying to create a mtable and record tracking information at the observation
points. The save attribute can also be a string specifying saving positions in the observed
elements: "atentry", "atslice", "atexit" (i.e. true), "atbound" (i.e. entry and
exit), "atbody" (i.e. slices and exit) and "atall". (default: false).
Example: save = false.

title A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "track around IP5".

observe A number specifying the observation points to consider for recording the tracking in-
formation. A zero value will consider all elements, while a positive value will consider
selected elements only, checked with method :is_observed, every observe> 0 turns.
(default: nil).
Example: observe = 1.

savesel A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for ob-
servation, i.e. the element is discarded if the predicate returns false. The arguments are
in order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil)
Example: savesel = \e -> mylist[e.name] ~= nil.

savemap A logical indicating to save the damap in the column __map of the mtable. (default:
nil).
Example: savemap = true.

atentry A callable (elm, mflw, 0, −1) invoked at element entry. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −1. (default:
fnil).
Example: atentry = myaction.

atslice A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in
order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil).
Example: atslice = myaction.

atexit A callable (elm, mflw, 0, −2) invoked at element exit. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index −2. (default:
fnil).
Example: atexit = myaction.

ataper A callable (elm, mflw, lw, islc) invoked at element aperture checks, by default at
last slice. The arguments are in order, the current element, the tracked map flow, the
length weight of the slice and the slice index. If a particle or a damap hits the aperture,
then its status = "lost" and it is removed from the list of tracked items. (default:
fnil).
Example: ataper = myaction.

1. COMMAND SYNOPSIS 108

atsave A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit.
The arguments are in order, the current element, the tracked map flow, the length weight
of the slice and the slice index. (default: fnil).
Example: atsave = myaction.

atdebug A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element
maps during the integration steps, i.e. within the slices. The arguments are in order, the
current element, the tracked map flow, the length weight of the integration step and a
string specifying a debugging message, e.g. "map_name:0" for entry and ":1" for exit.
If the level debug > 4 and atdebug is not specified, the default function mdump is used.
In some cases, extra arguments could be passed to the method. (default: fnil).
Example: atdebug = myaction.

codiff A number specifying the finite difference step to approximate the Jacobian when damaps
are disabled. If codiff is larger than 100×cotol, it will be adjusted to cotol/100 and
a warning will be emitted. (default: 1e−10).
Example: codiff = 1e−8.

coiter A number specifying the maximum number of iteration. If this threshold is reached, all
the remaining tracked objects are tagged as "unstable". (default: 20).
Example: coiter = 5.

cotol A number specifying the closed orbit tolerance. If all coordinates update of a particle or
a damap are smaller than cotol, then it is tagged as "stable". (default: 1e−8).
Example: cotol = 1e−6.

X1 A mappable specifying the coordinates {x,px,y,py,t,pt} to subtract to the final co-
ordinates of the particles or the damaps. (default: 0).
Example: X1 = { t=100, pt=10 }.

info A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

usrdef Any user defined data that will be attached to the tracked map flow, which is internally
passed to the elements method :track and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow A mflow containing the current state of a track command. If a map flow is provided, all
attributes are discarded except nstep, info and debug, as the command was already set
up upon its creation. (default: nil).
Example: mflow = mflow0.

The twiss command returns the following objects in this order:

mtbl A mtable corresponding to the augmented TFS table of the track command with the
twiss command columns.

mflw A mflow corresponding to the augmented map flow of the track command with the
twiss command data.

2. TWISS MTABLE 109

eidx An optional number corresponding to the last tracked element index in the sequence
when nstep was specified and stopped the command before the end of the range.

2 Twiss mtable
The twiss command returns a mtable where the information described hereafter is the default list of
fields written to the TFS files.4

The header of the mtable contains the fields in the default order:5

name The name of the command that created the mtable, e.g. "track".

type The type of the mtable, i.e. "track".

title The value of the command attribute title.

origin The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".

date The date of the creation of the mtable, e.g. "27/05/20".

time The time of the creation of the mtable, e.g. "19:18:36".

refcol The reference column for the mtable dictionnary, e.g. "name".

direction The value of the command attribute dir.

observe The value of the command attribute observe.

implicit The value of the command attribute implicit.

misalign The value of the command attribute misalign.

deltap The value of the command attribute deltap.

lost The number of lost particle(s) or damap(s).

chrom The value of the command attribute chrom.

coupling The value of the command attribute coupling.

length The s-length of the tracked design orbit.

q1 The tunes of mode 1.

q2 The tunes of mode 2.

q3 The tunes of mode 3.

alfap The momentum compaction factor αp.

etap The phase slip factor ηp.

gammatr The energy gamma transition γtr.

synch_1 The first synchroton radiation integral.

synch_2 The second synchroton radiation integral.

4The output of mtable in TFS files can be fully customized by the user.
5The fields from name to lost are set by the track command.

2. TWISS MTABLE 110

synch_3 The third synchroton radiation integral.

synch_4 The fourth synchroton radiation integral.

synch_5 The fifth synchroton radiation integral.

synch_6 The sixth synchroton radiation integral.

synch_8 The eighth synchroton radiation integral.

range The value of the command attribute range.6

__seq The sequence from the command attribute sequence.7

The core of the mtable contains the columns in the default order:8

name The name of the element.

kind The kind of the element.

s The s-position at the end of the element slice.

l The length from the start of the element to the end of the element slice.

id The index of the particle or damap as provided in X0.

x The local coordinate x at the s-position .

px The local coordinate px at the s-position.

y The local coordinate y at the s-position.

py The local coordinate py at the s-position.

t The local coordinate t at the s-position.

pt The local coordinate pt at the s-position.

slc The slice index ranging from −2 to nslice.

turn The turn number.

tdir The t-direction of the tracking in the element.

eidx The index of the element in the sequence.

status The status of the particle or damap.

alfa11 The optical function α of mode 1 at the s-position.

beta11 The optical function β of mode 1 at the s-position.

gama11 The optical function γ of mode 1 at the s-position.

mu1 The phase advance µ of mode 1 at the s-position.

6This field is not saved in the TFS table by default.
7Fields and columns starting with two underscores are protected data and never saved to TFS files.
8The column from name to status are set by the track command.

2. TWISS MTABLE 111

dx The dispersion function of x at the s-position.

dpx The dispersion function of px at the s-position.

alfa22 The optical function α of mode 2 at the s-position.

beta22 The optical function β of mode 2 at the s-position.

gama22 The optical function γ of mode 2 at the s-position.

mu2 The phase advance µ of mode 2 at the s-position.

dy The dispersion function of y at the s-position.

dpy The dispersion function of py at the s-position.

alfa33 The optical function α of mode 3 at the s-position.

beta33 The optical function β of mode 3 at the s-position.

gama33 The optical function γ of mode 3 at the s-position.

mu3 The phase advance µ of mode 3 at the s-position.

__map The damap at the s-position.7

The chrom attribute will add the following fields to the mtable header:

dq1 The chromatic derivative of tunes of mode 1, i.e. chromaticities.

dq2 The chromatic derivative of tunes of mode 2, i.e. chromaticities.

dq3 The chromatic derivative of tunes of mode 3, i.e. chromaticities.

The chrom attribute will add the following columns to the mtable:

dmu1 The chromatic derivative of the phase advance of mode 1 at the s-position.

ddx The chromatic derivative of the dispersion function of x at the s-position.

ddpx The chromatic derivative of the dispersion function of px at the s-position.

wx The chromatic amplitude function of mode 1 at the s-position.

phix The chromatic phase function of mode 1 at the s-position.

dmu2 The chromatic derivative of the phase advance of mode 2 at the s-position.

ddy The chromatic derivative of the dispersion function of y at the s-position.

ddpy The chromatic derivative of the dispersion function of py at the s-position.

wy The chromatic amplitude function of mode 2 at the s-position.

phiy The chromatic phase function of mode 2 at the s-position.

The coupling attribute will add the following columns to the mtable:

alfa12 The optical function α of coupling mode 1-2 at the s-position.

3. TRACKING LINEAR NORMAL FORM 112

beta12 The optical function β of coupling mode 1-2 at the s-position.

gama12 The optical function γ of coupling mode 1-2 at the s-position.

alfa13 The optical function α of coupling mode 1-3 at the s-position.

beta13 The optical function β of coupling mode 1-3 at the s-position.

gama13 The optical function γ of coupling mode 1-3 at the s-position.

alfa21 The optical function α of coupling mode 2-1 at the s-position.

beta21 The optical function β of coupling mode 2-1 at the s-position.

gama21 The optical function γ of coupling mode 2-1 at the s-position.

alfa23 The optical function α of coupling mode 2-3 at the s-position.

beta23 The optical function β of coupling mode 2-3 at the s-position.

gama23 The optical function γ of coupling mode 2-3 at the s-position.

alfa31 The optical function α of coupling mode 3-1 at the s-position.

beta31 The optical function β of coupling mode 3-1 at the s-position.

gama31 The optical function γ of coupling mode 3-1 at the s-position.

alfa32 The optical function α of coupling mode 3-2 at the s-position.

beta32 The optical function β of coupling mode 3-2 at the s-position.

gama32 The optical function γ of coupling mode 3-2 at the s-position.

3 Tracking linear normal form
TODO

4 Examples
TODO

Chapter 15. Match

The match command provides a unified interface to several optimizer. It can be used to match optics
parameters (its main purpose), to fit data sets with parametric functions in the least-squares sense, or to
find local or global minima of non-linear problems. Most local methods support bounds, equalities and
inequalities constraints. The least-squares methods are custom variant of the Newton-Raphson and the
Gauss-Newton algorithms implemented by the LSopt module. The local and global non-linear methods
are relying on the NLopt module, which interfaces the embedded NLopt library that implements a dozen
of well-known algorithms.

1 Command synopsis

Figure 15.1: Synopsis of the match command with default setup.

status, fmin, ncall = match {

command = function or nil,

variables = { variables-attributes,

{ variable-attributes },

...more variable definitions...

{ variable-attributes } },

equalities = { constraints-attributes,

{ constraint-attributes },

...more equality definitions...

{ constraint-attributes } },

inequalities = { constraints-attributes,

{ constraint-attributes },

...more inequality definitions...

{ constraint-attributes } },

weights = { weights-list },

objective = { objective-attributes },

maxcall=nil, −− call limit

maxtime=nil, −− time limit

info=nil, −− information level (output on terminal)

debug=nil, −− debug information level (output on terminal)

usrdef=nil, −− user defined data attached to the environment

}

The match command format is summarized in Figure 15.1, including the default setup of the attributes.
The match command supports the following attributes:

command A callable (e) that will be invoked during the optimization process at each iteration.
(default: nil).
Example: command := twiss { twiss-attributes }.

variables An mappable of single variable specification that can be combined with a set of specific-
ations for all variables. (no default, required).
Example: variables = {{ var="seq.knobs.mq_k1" }}.

113

https://nlopt.readthedocs.io/en/latest/

2. ENVIRONMENT 114

equalities An mappable of single equality specification that can be combined with a set of specific-
ations for all equalities. (default: {}).
Example: equalities = {{ expr=\t -> t.q1−64.295, name=’q1’ }}.

inequalities An mappable of single inequality specification that can be combined with a set of spe-
cifications for all inequalities. (default: {}).
Example: inequalities = {{ expr=\t -> t.mq4.beta11−50 }}.

weights A mappable of weights specification that can be used in the kind attribute of the con-
straints specifications. (default: {}).
Example: weights = { px=10 }.

objective A mappable of specifications for the objective to minimize. (default: {}).
Example: objective = { method="LD_LMDIF", fmin=1e−10 }.

maxcall A number specifying the maximum allowed calls of the command function or the objective
function. (default: nil).
Example: maxcall = 100.

maxtime A number specifying the maximum allowed time in seconds. (default: nil).
Example: maxtime = 60.

info A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 3.

debug A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

usrdef Any user defined data that will be attached to the matching environment, which is passed
as extra argument to all user defined functions in the match command. (default: nil).
Example: usrdef = { var=vector(15) }.

The match command returns the following values in this order:

status A string corresponding to the status of the command or the stopping reason of the
method. See Table 15.1 for the list of supported status.

fmin A number corresponding to the best minimum reached during the optimization.

ncall The number of calls of the command function or the objective function.

2 Environment
The match command creates a matching environment, which is passed as argument to user’s functions
invoked during an iteration. It contains some useful attributes that can be read or changed during the
optimization process (with care):

ncall The current number of calls of the command and/or the objective functions.

dtime A number reporting the current elapsed time.

stop A logical stopping the match command immediately if set to true.

3. COMMAND 115

Table 15.1: List of status (string) returned by the match command.

status Meaning
SUCCESS Generic success (NLopt only, unlikely).
FMIN fmin criteria is fulfilled by the objective function.
FTOL tol or rtol criteria are fulfilled by the objective function.
XTOL tol or rtol criteria are fulfilled by the variables step.
MAXCALL maxcall criteria is reached.
MAXTIME maxtime criteria is reached.
ROUNDOFF Round off limited iteration progress, results may still be useful.
STOPPED Termination forced by user, i.e. env.stop = true.

Errors
FAILURE Generic failure (NLopt only, unlikely).
INVALID_ARGS Invalid argument (NLopt only, unlikely).
OUT_OF_MEMORY Ran out of memory (NLopt only, unlikely).

info The current information level > 0.

debug The current debugging level > 0.

usrdef The usrdef attribute of the match command or nil.

command The command attribute of the match command or nil.

variables The variables attribute of the match command.

equalities The equalities attribute of the match command or {}.

inequalities The inequalities attribute of the match command or {}.

weights The weights attribute of the match command or {}.

3 Command
The attribute command (default: nil) must be a callable (e) that will be invoked with the matching
environment as first argument during the optimization, right after the update of the variables to their new
values, and before the evaluation of the constraints and the objective function. (default: nil).

command = function or nil,

The value returned by command is passed as the first argument to all constraints. If this return value is
nil, the match command considers the current iteration as invalid. Depending on the selected method,
the optimizer can start a new iteration or stop.

A typical command definition for matching optics is a function that calls a twiss command1:

command := mchklost(twiss { twiss-attributes })

where the function mchklost surrounding the twiss command checks if the returned mtable (i.e. the
twiss table) has lost particles and returns nil instead:

1Here, the function (i.e. the deferred expression) ignores the matching environment passed as first argument.

4. VARIABLES 116

mchklost = \mt -> mt.lost == 0 and mt or nil

The function mchklost2 is useful to avoid that all constraints do the check individually.

4 Variables
The attribute variables (no default, required) defines the variables that the command match will update
while trying to minimize the objective function.

variables = { variables-attributes,

{ variable-attributes },

...more variable definitions...

{ variable-attributes } },

The variable-attributes is a set of attributes that specify a single variable:

var A string specifying the identifier (and indirection) needed to reach the variable from the
user’s scope where the match command is defined. (default: nil).
Example: var = "lhcb1.mq_12l4_b1.k1".

name A string specifying the name of the variable to display when the info level is positive.
(default: var).
Example: name = "MQ.12L4.B1->k1".

min A number specifying the lower bound for the variable. (default: -inf).
Example: min = −4.

max A number specifying the upper bound for the variable. (default: +inf).
Example: max = 10.

sign A logical enforcing the sign of the variable by moving min or max to zero depending on
the sign of its initial value. (default: false).
Example: sign = true.

slope A number enforcing (LSopt methods only) with its sign the variation direction of the
variable, i.e. positive will only increase and negative will only decrease. (default: 0).
Example: slope = −1.

step A small positive number used to approximate the derivatives using the finite difference
method. If the value is not provided, the command will use some heuristic. (default:
nil).
Example: step = 1e−6.

tol A number specifying the tolerance on the variable step. If an update is smaller than tol,
the command will return the status "XTOL". (default: 0).
Example: tol = 1e−8.

get A callable (e) returning the variable value as a number, optionally using the matching
environment passed as first argument. This attribute is required if the variable is local or
an upvalue to avoid a significant slowdown of the code. (default: nil).
Example: get := lhcb1.mq_12l4_b1.k1.

2The function mchklost is provided by the GPhys module.

5. CONSTRAINTS 117

set A callable (v, e) updating the variable value with the number passed as first argument,
optionally using the matching environment passed as second argument. This attribute
is required if the variable is local or an upvalue to avoid a significant slowdown of the
code. (default: nil).
Example: set = \v,e => lhcb1.mqxa_1l5.k1 = v*e.usrdef.xon end.

The variables-attributes is a set of attributes that specify all variables together, but with a lower preced-
ence than the single variable specification of the same name unless otherwise specified:

min Idem variable-attributes, but for all variables with no local override.

max Idem variable-attributes, but for all variables with no local override.

sign Idem variable-attributes, but for all variables with no local override.

slope Idem variable-attributes, but for all variables with no local override.

step Idem variable-attributes, but for all variables with no local override.

tol Idem variable-attributes, but for all variables with no local override.

rtol A number specifying the relative tolerance on all variable steps. If an update is smaller
than rtol relative to its variable value, the command will return the status "XTOL".
(default: eps).
Example: tol = 1e−8.

nvar A number specifying the number of variables of the problem. It is useful when the
problem is made abstract with functions and it is not possible to deduce this count from
single variable definitions, or one needs to override it. (default: nil).
Example: nvar = 15.

get A callable (x, e) updating a vector passed as first argument with the values of all
variables, optionally using the matching environment passed as second argument. This
attribute supersedes all single variable get and may be useful when it is better to read
all the variables together, or when they are all locals or upvalues. (default: nil).
Example: get = \x,e -> e.usrdef.var:copy(x).

set A callable (x, e) updating all the variables with the values passed as first argument in
a vector, optionally using the matching environment passed as second argument. This
attribute supersedes all single variable set and may be useful when it is better to update
all the variables together, or when they are all locals or upvalues. (default: nil).
Example: set = \x,e -> x:copy(e.usrdef.var).

nowarn A logical disabling a warning emitted when the definition of get and set are advised
but not defined. It is safe to not define get and set in such case, but it will significantly
slowdown the code. (default: nil).
Example: nowarn = true.

5 Constraints
The attributes equalities (default: {}) and inequalities (default: {}) define the constraints that the
command match will try to satisfy while minimizing the objective function. Equalities and inequalities
are considered differently when calculating the penalty function.

5. CONSTRAINTS 118

equalities = { constraints-attributes,

{ constraint-attributes },

...more equality definitions...

{ constraint-attributes } },

inequalities = { constraints-attributes,

{ constraint-attributes },

...more inequality definitions...

{ constraint-attributes } },

weights = { weights-list },

The constraint-attributes is a set of attributes that specify a single constraint, either an equality or an
inequality:

expr A callable (r, e) returning the constraint value as a number, optionally using the result
of command passed as first argument, and the matching environment passed as second
argument. (default: nil)
Example: expr = \t -> t.IP8.beta11 − beta_ip8.

name A string specifying the name of the constraint to display when the info level is positive.
(default: nil).
Example: name = "betx@IP8".

kind A string specifying the kind to refer to for the weight of the constraint, taken either in
the user-defined or in the default weights-list. (default: nil).
Example: kind = "dq1".

weight A number used to override the weight of the constraint. (default: nil).
Example: weight = 100.

tol A number specifying the tolerance to apply on the constraint when checking for its
fulfillment. (default: 1e−8).
Example: tol = 1e−6.

The constraints-attributes is a set of attributes that specify all equalities or inequalities constraints to-
gether, but with a lower precedence than the single constraint specification of the same name unless
otherwise specified:

tol Idem constraint-attributes, but for all constraints with no local override.

nequ A number specifying the number of equations (i.e. number of equalities or inequalities)
of the problem. It is useful when the problem is made abstract with functions and it
is not possible to deduce this count from single constraint definitions, or one needs to
override it. (default: nil).
Example: nequ = 15.

exec A callable (x, c, cjac) updating a vector passed as second argument with the values
of all constraints, and updating an optional matrix passed as third argument with the
Jacobian of all constraints (if not nil), using the variables values passed in a vector as
first argument. This attribute supersedes all constraints expr and may be useful when it
is better to update all the constraints together. (default: nil).
Example: exec = myinequ, where (nvar=2 and nequ=2)

6. OBJECTIVE 119

local function myinequ (x, c, cjac)

c:fill { 8*x[1]^3 − x[2] ; (1−x[1])^3 − x[2] }

if cjac then −− fill [2x2] matrix if present

cjac:fill { 24*x[1]^2, −1 ; −3*(1−x[1])^2, −1 }

end

end

disp A logical disabling the display of the equalities in the summary if it is explicitly set to
false. This is useful for fitting data where equalities are used to compute the residuals.
(default: nil).
Example: disp = false.

The weights-list is a set of attributes that specify weights for kinds used by constraints. It allows to
override the default weights of the supported kinds summarized in Table 15.2, or to extend this list with
new kinds and weights. The default weight for any undefined kind is 1.
Example: weights = { q1=100, q2=100, mykind=3 }.

Table 15.2: List of supported kinds (string) and their default weights (number).

Name Weight Name Weight Name Weight Generic name
x 10 y 10 t 10
px 100 py 100 pt 100
dx 10 dy 10 dt 10 d
dpx 100 dpy 100 dpt 100 dp
ddx 10 ddy 10 ddt 10 dd
ddpx 100 ddpy 100 ddpt 100 ddp
wx 1 wy 1 wz 1 w
phix 1 phiy 1 phiz 1 phi

betx 1 bety 1 betz 1 beta
alfx 10 alfy 10 alfz 10 alfa
mux 10 muy 10 muz 10 mu

beta1 1 beta2 1 beta3 1 beta
alfa1 10 alfa2 10 alfa3 10 alfa
mu1 10 mu2 10 mu3 10 mu

q1 10 q2 10 q3 10 q
dq1 1 dq2 1 dq3 1 dq

6 Objective
The attribute objective (default: {}) defines the objective that the command match will try to minimize.

objective = { objective-attributes },

The objective-attributes is a set of attributes that specify the objective to fulfill:

method A string specifying the algorithm to use for solving the problem, see Tables 15.3, 15.4
and 15.5. (default: "LN_COBYLA" if objective.exec is defined, "LD_JACOBIAN" oth-
erwise).
Example: method = "LD_LMDIF".

6. OBJECTIVE 120

submethod A string specifying the algorithm from NLopt module to use for solving the problem
locally when the method is an augmented algorithm, see Table 15.4 and 15.5. (default:
"LN_COBYLA").
Example: method = "AUGLAG", submethod = "LD_SLSQP".

fmin A number corresponding to the minimum to reach during the optimization. For least
squares problems, it corresponds to the tolerance on the penalty function. If an iteration
find a value smaller than fmin and all the constraints are fulfilled, the command will
return the status "FMIN". (default: nil).
Example: fmin = 1e−12.

tol A number specifying the tolerance on the objective function step. If an update is smaller
than tol, the command will return the status "FTOL". (default: 0).
Example: tol = 1e−10.

rtol A number specifying the relative tolerance on the objective function step. If an update is
smaller than rtol relative to its step value, the command will return the status "FTOL".
(default: 0).
Example: tol = 1e−8.

bstra A number specifying the strategy to select the best case of the objective function. (de-
fault: nil).
Example: bstra = 0.3

broyden A logical allowing the Jacobian approximation by finite difference to update its columns
with a Broyden’s rank one estimates when the step of the corresponding variable is al-
most collinear with the variables step vector. This option may save some expensive calls
to command, e.g. save Twiss calculations, when it does not degrade the rate of conver-
gence of the selected method. (default: nil).
Example: broyden = true.

reset A logical specifying to the match command to restore the initial state of the variables
before returning. This is useful to attempt an optimization without changing the state
of the variables. Note that if any function amongst command, variables get and set,
constraints expr or exec, or objective exec have side effects on the environment, these
will be persistent. (default: nil).
Example: reset = true.

exec A callable (x, fgrd) returning the value of the objective function as a number, and up-
dating a vector passed as second argument with its gradient, using the variables values
passed in a vector as first argument. (default: nil).
Example: exec = myfun, where (nvar=2)

local function myfun(x, fgrd)

if fgrd then −− fill [2x1] vector if present

fgrd:fill { 0, 0.5/sqrt(x[2]) }

end

return sqrt(x[2])

end

grad A logical enabling (true) or disabling (false) the approximation by finite difference of
the gradient of the objective function or the Jacobian of the constraints. A nil value will

3MAD-X matching corresponds to bstra=0.

7. ALGORITHMS 121

be converted to true if no exec function is defined and the selected method requires
derivatives (D), otherwise it will be converted to false. (default: nil).
Example: grad = false.

bisec A number specifying (LSopt methods only) the maximum number of attempt to minim-
ize an increasing objective function by reducing the variables steps by half, i.e. that is
a line search using α = 0.5k where k = 0..bisec. (default: 3 if objective.exec is
undefined, 0 otherwise).
Example: bisec = 9.

rcond A number specifying (LSopt methods only) how to determine the effective rank of the
Jacobian while solving the least squares system (see ssolve from the Matrix module).
This attribute can be updated between iterations, e.g. through env.objective.rcond.
(default: eps).
Example: rcond = 1e−14.

jtol A number specifying (LSopt methods only) the tolerance on the norm of the Jacobian
rows to reject useless constraints. This attribute can be updated between iterations,
e.g. through env.objective.jtol. (default: eps).
Example: tol = 1e−14.

jiter A number specifying (LSopt methods only) the maximum allowed attempts to solve
the least squares system when variables are rejected, e.g. wrong slope or out-of-bound
values. (default: 10).
Example: jiter = 15.

jstra A number specifying (LSopt methods only) the strategy to use for reducing the variables
of the least squares system. (default: 1).
Example: jstra = 3.4

jstra Strategy for reducing variables of least squares system.
0 no variables reduction, constraints reduction is still active.
1 reduce system variables for bad slopes and out-of-bound values.
2 idem 1, but bad slopes reinitialize variables to their original state.
3 idem 2, but strategy switches definitely to 0 if jiter is reached.

7 Algorithms
The match command supports local and global optimization algorithms through the method attribute,
as well as combinations of them with the submethod attribute (see objective). The method should be
selected according to the kind of problem that will add a prefix to the method name: local (L) or global
(G), with (D) or without (N) derivatives, and least squares or nonlinear function minimization. When the
method requires the derivatives (D) and no objective.exec function is defined or the attribute grad is
set to false, the match command will approximate the derivatives, i.e. gradient and Jacobian, by the
finite difference method (see derivatives).

Most global optimization algorithms explore the variables domain with methods belonging to stochastic
sampling, deterministic scanning, and splitting strategies, or a mix of them. Hence, all global methods
require boundaries to define the searching region, which may or may not be internally scaled to a hyper-
cube. Some global methods allow to specify with the submethod attribute, the local method to use for
searching local minima. If this is not the case, it is wise to refine the global solution with a local method

4MAD-X JACOBIAN with strategy=3 corresponds to jstra=3.

7. ALGORITHMS 122

afterward, as global methods put more effort on finding global solutions than precise local minima. The
global (G) optimization algorithms, with (D) or without (N) derivatives, are listed in Table 15.5.

Most local optimization algorithms with derivatives are variants of the Newton iterative method suit-
able for finding local minima of nonlinear vector-valued function f(x), i.e. searching for stationary
points. The iteration steps h are given by the minimization h = −α(∇2f)−1∇f , coming from the
local approximation of the function at the point x + h by its Taylor series truncated at second order
f(x + h) ≈ f(x) + hT∇f(x) + 1

2h
T∇2f(x)h, and solved for ∇hf = 0. The factor α > 0 is part

of the line search strategy, which is sometimes replaced or combined with a trusted region strategy like
in the Leverberg-Marquardt algorithm. The local (L) optimization algorithms, with (D) or without (N)
derivatives, are listed in Table 15.3 for least squares methods and in Table 15.4 for non-linear methods,
and can be grouped by family of algorithms:

Newton An iterative method to solve nonlinear systems that uses iteration step given by the min-
imization h = −α(∇2f)−1∇f .

Newton-Raphson An iterative method to solve nonlinear systems that uses iteration step given by the
minimization h = −α(∇f)−1f .

Gradient-Descent An iterative method to solve nonlinear systems that uses iteration step given by
h = −α∇f .

Quasi-Newton A variant of the Newton method that uses BFGS approximation of the Hessian ∇2f or
its inverse (∇2f)−1, based on values from past iterations.

Gauss-Newton A variant of the Newton method for least-squares problems that uses iteration step given
by the minimization h = −α(∇fT∇f)−1(∇fT f), where the Hessian ∇2f is approxim-
ated by∇fT∇f with∇f being the Jacobian of the residuals f .

Levenberg-Marquardt A hybrid G-N and G-D method for least-squares problems that uses itera-
tion step given by the minimization h = −α(∇fT∇f + µD)−1(∇fT f), where µ > 0
is the damping term selecting the method G-N (small µ) or G-D (large µ), and D =
diag(∇fT∇f).

Simplex A linear programming method (simplex method) working without using any derivatives.

Nelder-Mead A nonlinear programming method (downhill simplex method) working without using
any derivatives.

Principal-Axis An adaptive coordinate descent method working without using any derivatives, se-
lecting the descent direction from the Principal Component Analysis.

7.1 Stopping criteria
The match command will stop the iteration of the algorithm and return one of the following status if
the corresponding criteria, checked in this order, is fulfilled (see also Table 15.1):

STOPPED Check env.stop == true, i.e. termination forced by a user-defined function.

FMIN Check f 6 fmin if cfail = 0 or bstra == 0, where f is the current value of the objective
function, and cfail the number of failed constraints (i.e. feasible point).

FTOL Check |∆f | 6 ftol or |∆f | 6 frtol |f | if cfail = 0, where f and ∆f are the current value
and step of the objective function, and cfail the number of failed constraints (i.e. feasible
point).

7. ALGORITHMS 123

XTOL Check max(|∆x| − xtol) 6 0 or max(|∆x| − xrtol ◦ |x|) 6 0, where x and ∆x are the
current values and steps of the variables. Note that these criteria are checked even for
non feasible points, i.e. cfail > 0, as the algorithm can be trapped in a local minima that
does not satisfy the constraints.

ROUNDOFF Check max(|∆x| − ε |x|) 6 0 if xrtol < ε, where x and ∆x are the current values and
steps of the variables. The LSopt module returns also this status if the Jacobian is full of
zeros, which is jtol dependent during its jstra reductions.

MAXCALL Check env.ncall >= maxcall if maxcall > 0.

MAXTIME Check env.dtime >= maxtime if maxtime > 0.

7.2 Objective function
The objective function is the key point of the match command, specially when tolerances are applied to
it or to the constraints, or the best case strategy is changed. It is evaluated as follow:

1. Update user’s variables with the vector x.
2. Evaluate the callable command if defined and pass its value to the constraints.
3. Evaluate the callable objective.exec if defined and save its value f .
4. Evaluate the callable equalities.exec if defined, otherwise evaluate all the functions equalities[].expr(cmd,env),

and use the result to fill the vector c=.
5. Evaluate the callable inequalities.exec if defined, otherwise evaluate all the functions inequalities[].expr(cmd,env)

and use the result to fill the vector c6.
6. Count the number of invalid constraints cfail = card{|c=| > c=tol}+ card{c6 > c6tol}.5

7. Calculate the penalty p = ‖c‖/‖w‖, where c = w ◦
[
c=

c6

]
and w is the weights vector of the

constraints. Set f = p if the callable objective.exec is undefined.6

8. Save the current iteration state as the best state depending on the strategy bstra. The default
bstra=nil corresponds to the last strategy.

bstra Strategy for selecting the best case of the objective function.
0 f < fbest

min , no feasible point check.
1 cfail 6 cbest

fail and f < fbest
min , improve both feasible point and objective.

− cfail < cbest
fail or cfail = cbest

fail and f < fbest
min , improve feasible point or objective.

7.3 Derivatives
The derivatives are approximated by the finite difference methods when the selected algorithm requires
them (D) and the function objective.exec is undefined or the attribute grad=false. The difficulty of
the finite difference methods is to choose the small step h for the difference. The match command uses
the forward difference method with a step h = 10−4 ‖h‖, where h is the last iteration steps, unless it is
overridden by the user with the variable attribute step. In order to avoid zero step size, which would be
problematic for the calculation of the Jacobian, the choice of h is a bit more subtle:

∂fj
∂xi
≈ fj(x + hei)− fj(x)

h
; h =


10−4 ‖h‖ if ‖h‖ 6= 0

10−8 ‖x‖ if ‖h‖ = 0 and ‖x‖ 6= 0

10−10 otherwise.

5The LSopt module sets the values of valid inequalities to zero, i.e. c6 = 0 if c6 6 c6tol.
6The penalty is the norm of the residuals ‖c‖, not the usual 1

2 ‖c‖
2, which affects tolerance specification.

8. CONSOLE OUTPUT 124

Hence the approximation of the Jacobian will need an extra evaluation of the objective function per
variable. If this evaluation has an heavy cost, e.g. like a twiss command, it is possible to approximate
the Jacobian evolution by a Broyden’s rank-1 update with the broyden attribute:

Jk+1 = Jk +
f(xk + hk)− f(xk)− Jk hk

‖hk‖2
hT
k

The update of the i-th column of the Jacobian by the Broyden approximation makes sense if the angle
between h and ei is small, that is when |hTei| > γ ‖h‖. The match command uses a rather pessim-
istic choice of γ = 0.8, which gives good performance. Nevertheless, it is advised to always check if
Broyden’s update saves evaluations of the objective function for your study.

8 Console output
The verbosity of the output of the match command on the console (e.g. terminal) is controlled by the
info level, where the level info=0 means a completely silent command as usual. The first verbose level
info=1 displays the final summary at the end of the matching, as shown in the Figure 15.2, and the
next level info=2 adds intermediate summary for each evaluation of the objective function, as shown
in the Figure 15.3. The columns of these tables are self-explanatory, and the sign > on the right of the
constraints marks those failing.

The bottom line of the intermediate summary displays in order:

– the number of evaluation of the objective function so far,
– the elapsed time in second (in square brackets) so far,
– the current objective function value,
– the current objective function step,
– the current number of constraint that failed cfail.

The bottom line of the final summary displays the same information but for the best case found, as well
as the final status returned by the match command. The number in square brackets right after fbst is the
evaluation number of the best case.

The LSopt module adds the sign # to mark the adjusted variables and the sign * to mark the rejected
variables and constraints on the right of the intermediate summary tables to qualify the behavior of the
constraints and the variables during the optimization process. If these signs appear in the final summary
too, it means that they were always adjusted or rejected during the matching, which is useful to tune your
study e.g. by removing the useless constraints.

9 Modules
The match command can be extended easily with new optimizer either from external libraries or internal
module, or both. The interface should be flexible and extensible enough to support new algorithms and
new options with a minimal effort.

9.1 LSopt
The LSopt (Least Squares optimization) module implements custom variant of the Newton-Raphson
and the Levenberg-Marquardt algorithms to solve least squares problems. Both support the options
rcond, bisec, jtol, jiter and jstra described in the section objective, with the same default values.
Table 15.3 lists the names of the algorithms for the attribute method. These algorithms cannot be used
with the attribute submethod for the augmented algorithms of the NLopt module, which would not make
sense as these methods support both equalities and inequalities.

9. MODULES 125

Figure 15.2: Match command summary output (info=1).

Constraints Type Kind Weight Penalty Value

1 IP8 equality beta 1 9.41469e-14

2 IP8 equality beta 1 3.19744e-14

3 IP8 equality alfa 10 0.00000e+00

4 IP8 equality alfa 10 1.22125e-14

5 IP8 equality dx 10 5.91628e-14

6 IP8 equality dpx 100 1.26076e-13

7 E.DS.R8.B1 equality beta 1 7.41881e-10

8 E.DS.R8.B1 equality beta 1 1.00158e-09

9 E.DS.R8.B1 equality alfa 10 4.40514e-12

10 E.DS.R8.B1 equality alfa 10 2.23532e-11

11 E.DS.R8.B1 equality dx 10 7.08333e-12

12 E.DS.R8.B1 equality dpx 100 2.12877e-13

13 E.DS.R8.B1 equality mu1 10 2.09610e-12

14 E.DS.R8.B1 equality mu2 10 1.71063e-12

Variables Final Value Init. Value Lower Limit Upper Limit

--

1 kq4.l8b1 -3.35728e-03 -4.31524e-03 -8.56571e-03 0.00000e+00

2 kq5.l8b1 4.93618e-03 5.28621e-03 0.00000e+00 8.56571e-03

3 kq6.l8b1 -5.10313e-03 -5.10286e-03 -8.56571e-03 0.00000e+00

4 kq7.l8b1 8.05555e-03 8.25168e-03 0.00000e+00 8.56571e-03

5 kq8.l8b1 -7.51668e-03 -5.85528e-03 -8.56571e-03 0.00000e+00

6 kq9.l8b1 7.44662e-03 7.07113e-03 0.00000e+00 8.56571e-03

7 kq10.l8b1 -6.73001e-03 -6.39311e-03 -8.56571e-03 0.00000e+00

8 kqtl11.l8b1 6.85635e-04 7.07398e-04 0.00000e+00 5.56771e-03

9 kqt12.l8b1 -2.38722e-03 -3.08650e-03 -5.56771e-03 0.00000e+00

10 kqt13.l8b1 5.55969e-03 3.78543e-03 0.00000e+00 5.56771e-03

11 kq4.r8b1 4.23719e-03 4.39728e-03 0.00000e+00 8.56571e-03

12 kq5.r8b1 -5.02348e-03 -4.21383e-03 -8.56571e-03 0.00000e+00

13 kq6.r8b1 4.18341e-03 4.05914e-03 0.00000e+00 8.56571e-03

14 kq7.r8b1 -5.48774e-03 -6.65981e-03 -8.56571e-03 0.00000e+00

15 kq8.r8b1 5.88978e-03 6.92571e-03 0.00000e+00 8.56571e-03

16 kq9.r8b1 -3.95756e-03 -7.46154e-03 -8.56571e-03 0.00000e+00

17 kq10.r8b1 7.18012e-03 7.55573e-03 0.00000e+00 8.56571e-03

18 kqtl11.r8b1 -3.99902e-03 -4.78966e-03 -5.56771e-03 0.00000e+00

19 kqt12.r8b1 -1.95221e-05 -1.74210e-03 -5.56771e-03 0.00000e+00

20 kqt13.r8b1 -2.04425e-03 -3.61438e-03 -5.56771e-03 0.00000e+00

ncall=381 [4.1s], fbst[381]=8.80207e-12, fstp=-3.13047e-08, status=FMIN.

9.2 NLopt
The NLopt (Non-Linear optimization) module provides a simple interface to the algorithms implemented
in the embedded NLopt library. Tables 15.4 and 15.5 list the names of the local and global algorithms

https://nlopt.readthedocs.io/en/latest/

9. MODULES 126

Figure 15.3: Match command intermediate output (info=2).

Constraints Type Kind Weight Penalty Value

1 IP8 equality beta 1 3.10118e+00 >

2 IP8 equality beta 1 1.85265e+00 >

3 IP8 equality alfa 10 9.77591e-01 >

4 IP8 equality alfa 10 8.71014e-01 >

5 IP8 equality dx 10 4.37803e-02 >

6 IP8 equality dpx 100 4.59590e-03 >

7 E.DS.R8.B1 equality beta 1 9.32093e+01 >

8 E.DS.R8.B1 equality beta 1 7.60213e+01 >

9 E.DS.R8.B1 equality alfa 10 2.98722e+00 >

10 E.DS.R8.B1 equality alfa 10 1.04758e+00 >

11 E.DS.R8.B1 equality dx 10 7.37813e-02 >

12 E.DS.R8.B1 equality dpx 100 6.67388e-03 >

13 E.DS.R8.B1 equality mu1 10 7.91579e-02 >

14 E.DS.R8.B1 equality mu2 10 6.61916e-02 >

Variables Curr. Value Curr. Step Lower Limit Upper Limit

--

1 kq4.l8b1 -3.36997e-03 -4.81424e-04 -8.56571e-03 0.00000e+00 #

2 kq5.l8b1 4.44028e-03 5.87400e-04 0.00000e+00 8.56571e-03

3 kq6.l8b1 -4.60121e-03 -6.57316e-04 -8.56571e-03 0.00000e+00 #

4 kq7.l8b1 7.42273e-03 7.88826e-04 0.00000e+00 8.56571e-03

5 kq8.l8b1 -7.39347e-03 0.00000e+00 -8.56571e-03 0.00000e+00 *
6 kq9.l8b1 7.09770e-03 2.58912e-04 0.00000e+00 8.56571e-03

7 kq10.l8b1 -5.96101e-03 -8.51573e-04 -8.56571e-03 0.00000e+00 #

8 kqtl11.l8b1 6.15659e-04 8.79512e-05 0.00000e+00 5.56771e-03 #

9 kqt12.l8b1 -2.66538e-03 0.00000e+00 -5.56771e-03 0.00000e+00 *
10 kqt13.l8b1 4.68776e-03 0.00000e+00 0.00000e+00 5.56771e-03 *
11 kq4.r8b1 4.67515e-03 -5.55795e-04 0.00000e+00 8.56571e-03 #

12 kq5.r8b1 -4.71987e-03 5.49407e-04 -8.56571e-03 0.00000e+00 #

13 kq6.r8b1 4.68747e-03 -5.54035e-04 0.00000e+00 8.56571e-03 #

14 kq7.r8b1 -5.35315e-03 4.58938e-04 -8.56571e-03 0.00000e+00 #

15 kq8.r8b1 5.77068e-03 0.00000e+00 0.00000e+00 8.56571e-03 *
16 kq9.r8b1 -4.97761e-03 -7.11087e-04 -8.56571e-03 0.00000e+00 #

17 kq10.r8b1 6.90543e-03 4.33052e-04 0.00000e+00 8.56571e-03

18 kqtl11.r8b1 -4.16758e-03 -5.95369e-04 -5.56771e-03 0.00000e+00 #

19 kqt12.r8b1 -1.57183e-03 0.00000e+00 -5.56771e-03 0.00000e+00 *
20 kqt13.r8b1 -2.57565e-03 0.00000e+00 -5.56771e-03 0.00000e+00 *

ncall=211 [2.3s], fval=8.67502e-01, fstp=-2.79653e+00, ccnt=14.

respectively for the attribute method. The methods that do not support equalities (column Equ) or in-
equalities (column Iqu) can still be used with constraints by specifying them as the submethod of the
AUGmented LAGrangian method. For details about these algorithms, please refer to the Algorithms
section of its online documentation.

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest/

10. EXAMPLES 127

Table 15.3: List of supported least squares methods (LSopt).

method Equ Iqu Description
LD_JACOBIAN y y Modified Newton-Raphson algorithm.
LD_LMDIF y y Modified Levenberg-Marquardt algorithm.

Table 15.4: List of supported non-linear local methods (NLopt).

method Equ Iqu Description
Local optimizers without derivative (LN_)

LN_BOBYQA n n Bound-constrained Optimization BY Quadratic Approxima-
tions algorithm.

LN_COBYLA y y Bound Constrained Optimization BY Linear Approximations
algorithm.

LN_NELDERMEAD n n Original Nelder-Mead algorithm.
LN_NEWUOA n n Older and less efficient LN_BOBYQA.
LN_NEWUOA_BOUND n n Older and less efficient LN_BOBYQA with bound constraints.
LN_PRAXIS n n PRincipal-AXIS algorithm.
LN_SBPLX n n Subplex algorithm, variant of Nelder-Mead.

Local optimizers with derivative (LD_)
LD_CCSAQ n y Conservative Convex Separable Approximation with Quatratic

penalty.
LD_LBFGS n n BFGS algorithm with low memory footprint.
LD_LBFGS_NOCEDAL n n Variant from J. Nocedal of LD_LBFGS.
LD_MMA n y Method of Moving Asymptotes algorithm.
LD_SLSQP y y Sequential Least-Squares Quadratic Programming algorithm.
LD_TNEWTON n n Inexact Truncated Newton algorithm.
LD_TNEWTON_PRECOND n n Idem LD_TNEWTON with preconditioning.
LD_TNEWTON_PRECOND-
_RESTART

n n Idem LD_TNEWTON with preconditioning and steepest-descent
restarting.

LD_TNEWTON_RESTART n n Idem LD_TNEWTON with steepest-descent restarting.
LD_VAR1 n n Shifted limited-memory VARiable-metric rank-1 algorithm.
LD_VAR2 n n Shifted limited-memory VARiable-metric rank-2 algorithm.

10 Examples
10.1 Matching tunes and chromaticity
The following example below shows how to match the betatron tunes of the LHC beam 1 to q1 = 64.295
and q2 = 59.301 using the quadrupoles strengths kqtf and kqtd, followed by the matching of the
chromaticities to dq1 = 15 and dq2 = 15 using the main sextupole strengths ksf and ksd.

local lhcb1 in MADX

local twiss, match in MAD

local status, fmin, ncall = match {

command := twiss { sequence=lhcb1, cofind=true,

method=4, observe=1 },

variables = { rtol=1e−6, −− 1 ppm

10. EXAMPLES 128

Table 15.5: List of supported non-linear global methods (NLopt).

method Equ Iqu Description
Global optimizers without derivative (GN_)

GN_CRS2_LM n n Variant of the Controlled Random Search algorithm with Local
Mutation (mixed stochastic and genetic method).

GN_DIRECT n n DIviding RECTangles algorithm (deterministic method).
GN_DIRECT_L n n Idem GN_DIRECT with locally biased optimization.
GN_DIRECT_L_RAND n n Idem GN_DIRECT_L with some randomization in the selection

of the dimension to reduce next.
GN_DIRECT*_NOSCAL n n Variants of above GN_DIRECT* without scaling the problem to

a unit hypercube to preserve dimension weights.
GN_ESCH n n Modified Evolutionary algorithm (genetic method).
GN_ISRES y y Improved Stochastic Ranking Evolution Strategy algorithm

(mixed genetic and variational method).
GN_MLSL n n Multi-Level Single-Linkage algorithm (stochastic method).
GN_MLSL_LDS n n Idem GN_MLSL with low-discrepancy scan sequence.

Global optimizers with derivative (GD_)
GD_MLSL n n Multi-Level Single-Linkage algorithm (stochastic method).
GD_MLSL_LDS n n Idem GL_MLSL with low-discrepancy scan sequence.
GD_STOGO n n Branch-and-bound algorithm (deterministic method).
GD_STOGO_RAND n n Variant of GD_STOGO (deterministic and stochastic method).

Augmented methods for other NLopt optimizers
AUGLAG y y Augmented Lagrangian algorithm, combines objective func-

tion and nonlinear constraints into a single "penalty" function.
AUGLAG_EQ y n Idem AUGLAG but handles only equality constraints and pass

inequality constraints to submethod.
G_MLSL n n MLSL with user-specified local algorithm using submethod.
G_MLSL_LDS n n Idem G_MLSL with low-discrepancy scan sequence.

{ var=’MADX.kqtf_b1’ },

{ var=’MADX.kqtd_b1’ }},

equalities = {{ expr=\t -> t.q1−64.295, name=’q1’ },

{ expr=\t -> t.q2−59.301, name=’q2’ }},

objective = { fmin=1e−10, broyden=true },

maxcall=100, info=2

}

local status, fmin, ncall = match {

command := twiss { sequence=lhcb1, cofind=true, chrom=true,

method=4, observe=1 },

variables = { rtol=1e−6, −− 1 ppm

{ var=’MADX.ksf_b1’ },

{ var=’MADX.ksd_b1’ }},

equalities = {{ expr=\t -> t.dq1−15, name=’dq1’ },

{ expr=\t -> t.dq2−15, name=’dq2’ }},

objective = { fmin=1e−8, broyden=true },

maxcall=100, info=2

}

10. EXAMPLES 129

10.2 Matching interaction point
The following example hereafter shows how to squeeze the beam 1 of the LHC to β∗ = beta_ip8∗0.62

at the IP8 while enforcing the required constraints at the interaction point and the final dispersion sup-
pressor (i.e. at makers "IP8" and "E.DS.R8.B1") in two iterations, using the 20 quadrupoles strengths
from kq4 to kqt13 on left and right sides of the IP. The boundary conditions are specified by the beta0
blocks bir8b1 for the initial conditions and eir8b1 for the final conditions. The final summary and an
instance of the intermediate summary of this match example are shown in the Figures 15.2 and 15.3.

local SS, ES = "S.DS.L8.B1", "E.DS.R8.B1"

lhcb1.range = SS.."/"..ES

for n=1,2 do

beta_ip8 = beta_ip8*0.6

local status, fmin, ncall = match {

command := twiss { sequence=lhcb1, X0=bir8b1, method=4, observe=1 },

variables = { sign=true, rtol=1e−8, −− 20 variables

{ var=’MADX.kq4_l8b1’, name=’kq4.l8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq5_l8b1’, name=’kq5.l8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq6_l8b1’, name=’kq6.l8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq7_l8b1’, name=’kq7.l8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq8_l8b1’, name=’kq8.l8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq9_l8b1’, name=’kq9.l8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq10_l8b1’, name=’kq10.l8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kqtl11_l8b1’, name=’kqtl11.l8b1’, min=−lim3, max=lim3 },

{ var=’MADX.kqt12_l8b1’, name=’kqt12.l8b1’ , min=−lim3, max=lim3 },

{ var=’MADX.kqt13_l8b1’, name=’kqt13.l8b1’, min=−lim3, max=lim3 },

{ var=’MADX.kq4_r8b1’, name=’kq4.r8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq5_r8b1’, name=’kq5.r8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq6_r8b1’, name=’kq6.r8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq7_r8b1’, name=’kq7.r8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq8_r8b1’, name=’kq8.r8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq9_r8b1’, name=’kq9.r8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kq10_r8b1’, name=’kq10.r8b1’, min=−lim2, max=lim2 },

{ var=’MADX.kqtl11_r8b1’, name=’kqtl11.r8b1’, min=−lim3, max=lim3 },

{ var=’MADX.kqt12_r8b1’, name=’kqt12.r8b1’, min=−lim3, max=lim3 },

{ var=’MADX.kqt13_r8b1’, name=’kqt13.r8b1’, min=−lim3, max=lim3 },

},

equalities = { −− 14 equalities

{ expr=\t -> t.IP8.beta11−beta_ip8, kind=’beta’, name=’IP8’ },

{ expr=\t -> t.IP8.beta22−beta_ip8, kind=’beta’, name=’IP8’ },

{ expr=\t -> t.IP8.alfa11, kind=’alfa’, name=’IP8’ },

{ expr=\t -> t.IP8.alfa22, kind=’alfa’, name=’IP8’ },

{ expr=\t -> t.IP8.dx, kind=’dx’, name=’IP8’ },

{ expr=\t -> t.IP8.dpx, kind=’dpx’, name=’IP8’ },

{ expr=\t -> t[ES].beta11−eir8b1.beta11, kind=’beta’, name=ES },

{ expr=\t -> t[ES].beta22−eir8b1.beta22, kind=’beta’, name=ES },

{ expr=\t -> t[ES].alfa11−eir8b1.alfa11, kind=’alfa’, name=ES },

{ expr=\t -> t[ES].alfa22−eir8b1.alfa22, kind=’alfa’, name=ES },

{ expr=\t -> t[ES].dx−eir8b1.dx, kind=’dx’, name=ES },

{ expr=\t -> t[ES].dpx−eir8b1.dpx, kind=’dpx’, name=ES },

{ expr=\t -> t[ES].mu1−muxip8, kind=’mu1’, name=ES },

10. EXAMPLES 130

{ expr=\t -> t[ES].mu2−muyip8, kind=’mu2’, name=ES },

},

objective = { fmin=1e−10, broyden=true },

maxcall=1000, info=2

}

MADX.n, MADX.tar = n, fmin

end

10.3 Fitting data
The following example shows how to fit data with a non-linear model using the least squares methods.
The "measurements" are generated by the data function:

d(x) = a sin(xf1) cos(xf2), with a = 5, f1 = 3, f2 = 7, and x ∈ [0, π).

The least squares minimization is performed by the small code below starting from the arbitrary values
a = 1, f1 = 1, and f2 = 1. The ’LD_JACOBIAN’ methods finds the values a = 5 ± 10−10, f1 =
3 ± 10−11, and f2 = 7 ± 10−11 in 2574 iterations and 0.1 s. The ’LD_LMDIF’ method finds similar
values in 2539 iterations. The data and the model are plotted in the Figure 15.4.

Figure 15.4: Fitting data using the Jacobian or Levenberg-Marquardt methods.

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3

d
(x
),

 m
(x
)

x = i*π/n with i = 0..n-1

Fitting d(x) = a*sin(x*f1)*cos(x*f2) via a, f1, f2

data
model

local n, k, a, f1, f2 = 1000, pi/1000, 5, 3, 7

local d = vector(n):seq():map \i -> a*sin(i*k*f1)*cos(i*k*f2) −− data

if noise then d=d:map \x -> x+randtn(noise) end −− add noise if any

local m, p = vector(n), { a=1, f1=1, f2=1 } −− model parameters

local status, fmin, ncall = match {

command := m:seq():map \i -> p.a*sin(i*k*p.f1)*cos(i*k*p.f2),

variables = { { var=’p.a’ },

{ var=’p.f1’ },

{ var=’p.f2’ }, min=1, max=10 },

10. EXAMPLES 131

equalities = { { expr=\m -> ((d−m):norm()) } },

objective = { fmin=1e−9, bisec=noise and 5 },

maxcall=3000, info=1

}

The same least squares minimization can be achieved on noisy data by adding a gaussian RNG truncated
at 2σ to the data generator, i.e. noise=2, and by increasing the attribute bisec=5. Of course, the penalty
tolerance fmin must be moved to variables tolerance tol or rtol. The ’LD_JACOBIAN’ methods finds
the values a = 4.98470, f1 = 3.00369, and f2 = 6.99932 in 704 iterations (404 for ’LD_LMDIF’). The
data and the model are plotted in the Figure 15.5.

Figure 15.5: Fitting data with noise using Jacobian or Levenberg-Marquardt methods.

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3

d
(x
),

 m
(x
)

x = i*π/n with i = 0..n-1

Fitting d(x) = a*sin(x*f1)*cos(x*f2) via a, f1, f2

data
model

10.4 Fitting data with derivatives
The following example shows how to fit data with a non-linear model and its derivatives using the least
squares methods. The least squares minimization is performed by the small code below starting from the
arbitrary values v = 0.9 and k = 0.2. The ’LD_JACOBIAN’ methods finds the values v = 0.362± 10−3

and k = 0.556 ± 10−3 in 6 iterations. The ’LD_LMDIF’ method finds similar values in 6 iterations too.
The data (points) and the model (curve) are plotted in the Figure 15.6, where the latter has been smoothed
using cubic splines.

local x = vector{0.038, 0.194, 0.425, 0.626 , 1.253 , 2.500 , 3.740 }

local y = vector{0.050, 0.127, 0.094, 0.2122, 0.2729, 0.2665, 0.3317}

local p = { v=0.9, k=0.2 }

local n = #x

local function eqfun (_, r, jac)

local v, k in p

for i=1,n do

r[i] = y[i] − v*x[i]/(k+x[i])

jac[2*i−1] = −x[i]/(k+x[i])
jac[2*i] = v*x[i]/(k+x[i])^2

10. EXAMPLES 132

Figure 15.6: Fitting data with derivatives using the Jacobian or Levenberg-Marquardt methods.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2 2.5 3 3.5 4

y
(x
),

 m
(x
)

x

Fitting y(x) = v*x/(k+x) via v, k

data
model

end

end

local status, fmin, ncall = match {

variables = { tol=5e-3, min=0.1, max=2,

{ var=’p.v’ },

{ var=’p.k’ } },

equalities = { nequ=n, exec=eqfun, disp=false },

maxcall=20

}

10.5 Minimizing function
The following example7 hereafter shows how to find the minimum of the function:

min
x∈R2

√
x2, subject to the constraints


x2 > 0,

x2 > (a1x1 + b1)
3,

x2 > (a2x1 + b2)
3,

for the parameters a1 = 2, b1 = 0, a2 = −1 and b2 = 1. The minimum of the function is fmin =
√

8
27

at the point x = (13 ,
8
27), and found by the method LD_MMA in 11 evaluations for a relative tolerance of

10−4 on the variables, starting at the arbitrary point x0 = (1.234, 5.678).

local function testFuncFn (x, grd)

if grd then x:fill{ 0, 0.5/sqrt(x[2]) } end

return sqrt(x[2])

end

local function testFuncLe (x, r, jac)

if jac then jac:fill{ 24*x[1]^2, −1, −3*(1−x[1])^2, −1 } end

7This example is taken from the NLopt documentation.

https://nlopt.readthedocs.io/en/latest/NLopt_Tutorial

10. EXAMPLES 133

r:fill{ 8*x[1]^3−x[2], (1−x[1])^3−x[2] }

end

local x = vector{1.234, 5.678} −− start point

local status, fmin, ncall = match {

variables = { rtol=1e−4,
{ var=’x[1]’, min=−inf },

{ var=’x[2]’, min=0 } },

inequalities = { exec=testFuncLe, nequ=2, tol=1e−8 },

objective = { exec=testFuncFn, method=’LD_MMA’ },

maxcall=100, info=2

}

This example can also be solved with least squares methods, where the LD_JACOBIAN method finds the
minimum in 8 iterations with a precision of±10−16, and the LD_LMDIF method finds the minimum in 10
iterations with a precision of ±10−11.

Chapter 16. Correct

The correct command (i.e. orbit correction) provides a simple interface to compute the orbit steering
correction and setup the kickers of the sequences from the analysis of their track and twiss mtables.

1 Command synopsis

Figure 16.1: Synopsis of the correct command with default setup.

mlst = correct {

sequence=nil, −− sequence(s) (required)

range=nil, −− sequence(s) range(s) (or sequence.range)

title=nil, −− title of mtable (default seq.name)

model=nil, −− mtable(s) with twiss functions (required)

orbit=nil, −− mtable(s) with measured orbit(s), or use model

target=nil, −− mtable(s) with target orbit(s), or zero orbit

kind=’ring’, −− ’line’ or ’ring’

plane=’xy’, −− ’x’, ’y’ or ’xy’

method=’micado’, −− ’LSQ’, ’SVD’ or ’MICADO’

ncor=0, −− number of correctors to consider by method, 0=all

tol=1e-5, −− rms tolerance on the orbit

units=1, −− units in [m] of the orbit

corcnd=false, −− precond of correctors using ’svdcnd’ or ’pcacnd’

corcut=0, −− value to theshold singular values in precond

cortol=0, −− value to theshold correctors in svdcnd

corset=true, −− update correctors correction strengths

monon=false, −− fraction (0<?<=1) of randomly available monitors

moncut=false, −− cut monitors above moncut sigmas

monerr=false, −− 1:use mrex and mrey alignment errors of monitors

−− 2:use msex and msey scaling errors of monitors

info=nil, −− information level (output on terminal)

debug=nil, −− debug information level (output on terminal)

}

The correct command format is summarized in Figure 16.1, including the default setup of the attributes.
The correct command supports the following attributes:

sequence The sequence (or a list of sequence) to analyze. (no default, required).
Example: sequence = lhcb1.

range A range (or a list of range) specifying the span of the sequence to analyze. If no range
is provided, the command looks for a range attached to the sequence, i.e. the attribute
seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

title A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "Correct orbit around IP5".

134

1. COMMAND SYNOPSIS 135

model A mtable (or a list of mtable) providing twiss-like information, e.g. elements, orbits
and optical functions, of the corresponding sequences. (no default, required).
Example: model = twmtbl.

orbit A mtable (or a list of mtable) providing track-like information, e.g. elements and meas-
ured orbits, of the corresponding sequences. If this attribute is nil, the model orbit is
used. (default: nil).
Example: orbit = tkmtbl.

target A mtable (or a list of mtable) providing track-like information, e.g. elements and target
orbits, of the corresponding sequences. If this attribute is nil, the design orbit is used.
(default: nil).
Example: target = tgmtbl.

kind A string specifying the kind of correction to apply among line or ring. The kind line

takes care of the causality between monitors, correctors and sequences directions, while
the kind ring considers the system as periodic. (default: ’ring’).
Example: kind = ’line’.

plane A string specifying the plane to correct among x, y and xy. (default: ’xy’).
Example: plane = ’x’.

method A string specifying the method to use for correcting the orbit among LSQ, SVD or micado.
These methods correspond to the solver used from the Matrix module to find the orbit
correction, namely solve, ssolve or nsolve. (default: ’micado’).
Example: method = ’svd’.

ncor A number specifying the number of correctors to consider with the method micado, zero
meaning all available correctors. (default: 0).
Example: ncor = 4.

tol A number specifying the rms tolerance on the residuals for the orbit correction. (default:
1e−5).
Example: tol = 1e−6.

unit A number specifying the unit of the orbit and target coordinates. (default: 1 [m]).
Example: units = 1e−3 [m], i.e. [mm].

corcnd A logical or a string specifying the method to use among svdcnd and pcacnd from
the Matrix module for the preconditioning of the system. A true value corresponds to
svdcnd. (default: false).
Example: corcnd = ’pcacnd’.

corcut A number specifying the thresholds for the singular values to pass to the svdcnd and
pcacnd method for the preconditioning of the system. (default: 0).
Example: cortol = 1e−6.

cortol A number specifying the thresholds for the correctors to pass to the svdcnd method for
the preconditioning of the system. (default: 0).
Example: cortol = 1e−8.

corset A logical specifying to update the correctors strengths for the corrected orbit. (default:
true).
Example: corset = false.

2. CORRECT MTABLE 136

monon A number specifying a fraction of available monitors selected from a uniform RNG.
(default: false).
Example: monon = 0.8, keep 80% of the monitors.

moncut A number specifying a threshold in number of sigma to cut monitor considered as out-
liers. (default: false).
Example: moncut = 2, cut monitors above 2σ.

monerr A number in 0..3 specifying the type of monitor reading errors to consider: 1 use scaling
errors msex and msey, 2 use alignment errors mrex, mrey and dpsi, 3 use both. (default:
false).
Example: monerr = 3.

info A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

The correct command returns the following object:

mlst A mtable (or a list of mtable) corresponding to the TFS table of the correct command.
It is a list when multiple sequences are corrected together.

2 Correct mtable
The correct command returns a mtable where the information described hereafter is the default list of
fields written to the TFS files.1

The header of the mtable contains the fields in the default order:

name The name of the command that created the mtable, e.g. "correct".

type The type of the mtable, i.e. "correct".

title The value of the command attribute title.

origin The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".

date The date of the creation of the mtable, e.g. "27/05/20".

time The time of the creation of the mtable, e.g. "19:18:36".

refcol The reference column for the mtable dictionnary, e.g. "name".

range The value of the command attribute range.2

__seq The sequence from the command attribute sequence.3

The core of the mtable contains the columns in the default order:
1The output of mtable in TFS files can be fully customized by the user.
2This field is not saved in the TFS table by default.
3Fields and columns starting with two underscores are protected data and never saved to TFS files.

3. EXAMPLES 137

name The name of the element.

kind The kind of the element.

s The s-position at the end of the element slice.

l The length from the start of the element to the end of the element slice.

x_old The local coordinate x at the s-position before correction.

y_old The local coordinate y at the s-position before correction.

x The predicted local coordinate x at the s-position after correction.

y The predicted local coordinate y at the s-position after correction.

rx The predicted local residual rx at the s-position after correction.

ry The predicted local residual ry at the s-position after correction.

hkick_old The local horizontal kick at the s-position before correction.

vkick_old The local vertical kick at the s-position before correction.

hkick The predicted local horizontal kick at the s-position after correction.

vkick The predicted local vertical kick at the s-position after correction.

shared A logical indicating if the element is shared with another sequence.

eidx The index of the element in the sequence.

Note that correct does not take into account the particles and damaps ids present in the (augmented)
track mtable, hence the provided tables should contain single particle or damap information.

3 Examples
TODO

Chapter 17. Emit

This command is not yet implemented in MAD. It will probably be implemented as a layer on top of the
Twiss and Match commands.

138

Chapter 18. Plot

The plot command provides a simple interface to the Gnuplot application. The Gnuplot release 5.2 or
higher must be installed and visible in the user PATH by MAD to be able to run this command.

1 Command synopsis
x x

Figure 18.1: Synopsis of the plot command with default setup.

cmd = plot {

sid = 1, −− stream id 1 <= n <= 25 (Gnuplot instances)

data = nil, −− { x=tbl.x, y=vec } (precedence over table)

table = nil, −− mtable

tablerange = nil, −− mtable range (default table.range)

sequence = nil, −− seq | { seq1, seq2, ...} | "keep"

range = nil, −− sequence range (default sequence.range)

name = nil, −− (default table.title)

date = nil, −− (default table.date)

time = nil, −− (default table.time)

output = nil, −− "filename" -> pdf | number -> wid

scrdump = nil, −− "filename"

survey-attributes

windows-attributes

layout-attributes

labels-attributes

axis-attributes

ranges-attributes

data-attributes

plots-attributes

custom-attributes

info=nil, −− information level (output on terminal)

debug=nil, −− debug information level (output on terminal)

}

The plot command format is summarized in Figure 18.1, including the default setup of the attributes.
The plot command supports the following attributes:

info A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

The plot command returns itself.

139

http://www.gnuplot.info

Part III

Physics

140

Chapter 19. Introduction

1 Local reference system

Figure 19.1: Local Reference System

y

x

z

ρ

ρ

centre of
curvature

actual
orbit

dr

s

reference
orbit

2 Global reference system

141

2. GLOBAL REFERENCE SYSTEM 142

Figure 19.2: Global Reference System showing the global Cartesian system (X,Y, Z) in black and
the local reference system (x, y, s) in red after translation (Xi, Yi, Zi) and rotation (θi, φi, ψi). The
projections of the local reference system axes onto the horizontal ZX plane of the Cartesian system are
figured with blue dashed lines. The intersections of planes ys, xy and xs of the local reference system
with the horizontal ZX plane of the Cartesian system are figured in green dashed lines.

Z

X

Y x

y
s

Zi

Xi

Yi

ψi

φi

θi

reference
orbit

intersection of
xy and ZX planes

intersection of
xs and ZX

planes

intersection of
ys and ZX

planes
projection of s
onto ZX-plane

Chapter 20. Geometric Maps

143

Chapter 21. Dynamic Maps

144

Chapter 22. Integrators

145

Chapter 23. Orbit

1 Closed Orbit

146

Chapter 24. Optics

147

Chapter 25. Normal Forms

148

Chapter 26. Misalignments

149

Chapter 27. Aperture

150

Chapter 28. Radiation

151

Part IV

Modules

152

Chapter 29. Introduction

153

Chapter 30. Types

154

Chapter 31. Constants

155

Chapter 32. Generic Utilities

156

Chapter 33. Generic Math

157

Chapter 34. Range

158

Chapter 35. Complex

159

Chapter 36. Matrix

160

Chapter 37. GTPSA

161

Chapter 38. DA Map

162

Chapter 39. Generic Physics

163

Chapter 40. External modules

164

Part V

Programming

165

Chapter 41. Introduction

166

Chapter 42. MAD environment

167

Chapter 43. Tests

1 Adding Tests

168

Chapter 44. Elements

1 Adding Elements

169

Chapter 45. Commands

1 Adding Commands

170

Chapter 46. Modules

1 Adding Modules
2 Embedding Modules

171

Chapter 47. Using C FFI

172

Part VI

Appendix

173

Chapter 48. GitHub Repository

174

Chapter 49. Contributors

175

Chapter 50. Bibliography

176

Chapter 51. Index

177

Index
__add, 48, 76
__beam, 41
__beta0, 43
__call, 36
__copy, 36, 63, 77
__cycle, 59, 72
__dat, 59, 72
__elem, 48
__env, 33
__flg, 33
__id, 33
__index, 33, 37, 63, 76
__init, 36, 41, 43, 63, 77
__ipairs, 37
__len, 36, 48, 63, 76
__map, 89, 96, 111
__metatable, 37
__mtbl, 77
__mul, 48
__newindex, 37, 41, 63, 76
__obj, 37
__pairs, 37
__par, 33
__same, 36
__seq, 72, 88, 96, 110, 136
__sequ, 63
__tostring, 37, 48
__unm, 48
__var, 33
command, 113
equalities, 114
inequalities, 114
weights, 114
objective, 114
variables, 113
boolean, 24
callable, 26
cdata, 25
function, 25
indexable, 26
iterable, 26
lengthable, 26
logical, 25
mappable, 26
nil, 24
number, 24
reference, 25

string, 24
table, 24
thread, 25
value, 25
NYI, 11
TBD, 11
TBR, 11
Todo, 11

addcol, 73
addrow, 74
alfa11, 110
alfa12, 111
alfa13, 112
alfa21, 112
alfa22, 111
alfa23, 112
alfa31, 112
alfa32, 112
alfa33, 111
alfap, 109
align, 60
angle, 46, 54, 88
aperture, 47
apertype, 47
aphot, 39
arch, 14
at, 64

bbox, 56
beam, 39, 59
bend, 55
beta, 39
beta0, 43
beta11, 110
beta12, 112
beta13, 112
beta2, 39
beta21, 112
beta22, 111
beta23, 112
beta31, 112
beta32, 112
beta33, 111
betgam, 39
betgam2, 39
brho, 39
bsearch, 35

178

INDEX 179

charge, 39
check_mtbl, 76
check_sequ, 63
chkick, cvkick, 52
chrom, 109
circle, 56
class, 65
clear, 74
clear_all, 34
clear_array, 34
clear_flags, 35
clear_variables, 34
close_env, 35
clrrow, 74
cofind

ataper, 102
atdebug, 102
atentry, 102
atexit, 102
atsave, 102
atslice, 102
beam, 99
codiff, 103
coiter, 103
cotol, 103
debug, 103
deltap, 99
dir, 99
fringe, 101
implicit, 101
info, 103
mapdef, 101
method, 101
mflow, 103
mflw, 103
misalign, 101
model, 101
mtbl, 103
nslice, 100
nstep, 99
nturn, 99
O0, 99
observe, 102
ptcmodel, 101
radiate, 101
range, 99
s0, 99
save, 101
savemap, 102
savesel, 102

sequence, 99
title, 102
totalpath, 101
usrdef, 103
X0, 99
X1, 103

cofind, 99
colname, 72
colnames, 72
column, 71
comb, 55
combqs, 55
copy, 33, 62, 75
copy_variables, 34
correct

corcnd, 135
corcut, 135
corset, 135
cortol, 135
debug, 136
info, 136
kind, 135
method, 135
mlst, 136
model, 135
moncut, 136
monerr, 136
monon, 136
ncor, 135
orbit, 135
plane, 135
range, 134
sequence, 134
target, 135
title, 134
tol, 135
unit, 135

correct, 134
coupling, 109
cycle, 62, 75

damap, 53
date, 71, 88, 95, 109, 136
ddpx, 111
ddpy, 111
ddx, 111
ddy, 111
deltap, 96, 109
deselect, 47, 61, 74
dir, 53, 59

INDEX 180

direction, 88, 95, 109
disabled, 54
dknl, dksl, 47, 51
dmu1, 111
dmu2, 111
dnrj, 54
dphi, 57
dpnl, dpsl, 52
dpsi, 57
dpx, 111
dpy, 111
dq1, 111
dq2, 111
dq3, 111
drift, 44
ds, 60
dtheta, 57
dtheta, dphi, dpsi, 54
dump_env, 35
dumpobj, 36
dumpseq, 63
dx, 111
dx, dy, ds, 54, 57
dy, 111

e1, e2, 47
eidx, 89, 96, 110, 137
elem, 59
element, 44
ellipse, 56
emrad, 39
energy, 39
et, 39
etap, 109
etn, 40
ex, 39
ex, ey, 53
exl, eyl, 53
exn, 40
extrn, 44
ey, 39
eyn, 40

f1, f2, 47
filter, 61, 75
fint, 47
fintx, 47
flag, 65
foreach, 61, 74
freq, 52
fringe, 47, 49, 50

fringemax, 47
from, 64

gama11, 110
gama12, 112
gama13, 112
gama21, 112
gama22, 111
gama23, 112
gama31, 112
gama32, 112
gama33, 111
gamma, 39
gammatr, 109
Gauss-Newton, 122
get, 73
get_flags, 35
get_variables, 34
get_varkeys, 33
getcol, 73
getrow, 73
Gradient-Descent, 122

h1, h2, 47
harmon, 52
header, 71
hgap, 47
hkick, 51, 137
hkick_old, 137

id, 96, 110
implicit, 54, 88, 95, 109
index, 60, 72
index_of, 60, 72
index_sat, 48
inscol, 73
insert, 35, 75
insert_sat, 48
insrow, 74
install, 61
is_class, 33
is_disabled, 48
is_final, 33
is_implicit, 48
is_instanceOf, 33
is_observed, 48
is_open_env, 35
is_readonly, 33
is_selected, 47
is_view, 63, 75
iter, 60, 74

INDEX 181

JIT compiler, 17

k0, 49
k0, k0s, 50
k0s, 49, 50
k1, k1s, 49, 50
k2, k2s, 49, 50
k3, k3s, 51
k4, k4s, 51
k5, k5s, 51
kick, 52
kill_ent_fringe, 47
kill_exi_fringe, 47
kind, 55, 78, 88, 96, 110, 137
knl, ksl, 47, 51
ks, ksi, 51

l, 46, 59, 88, 96, 110, 137
lag, 52
length, 109
length_of, 60, 73
Levenberg-Marquardt , 122
load_env, 35
lost, 96, 109
lrad, 46
lsearch, 35
Lua, 17
LuaJIT, 17

m, 14
make_dict, 76
maper, 56
mass, 39
match

command, 115
constraint
disp, 119
exec, 118
expr, 118
kind, 118
name, 118
nequ, 118
tol, 118
weight, 118

debug, 114
environment
command, 115
debug, 115
dtime, 114
equalities, 115
inequalities, 115

info, 115
ncall, 114
stop, 114
usrdef, 115
variables, 115
weights, 115

equalities, 117
fmin, 114
inequalities, 117
info, 114
maxcall, 114
maxtime, 114
ncall, 114
objective
bisec, 121
broyden, 120
bstra, 120
exec, 120
fmin, 120
grad, 120
jstra, 121
jiter, 121
jtol, 121
method, 119
rcond, 121
reset, 120
rtol, 120
submethod, 120
tol, 120

objective, 119
status, 114
usrdef, 114
variables
get, 116, 117
max, 116
min, 116
name, 116
nowarn, 117
nvar, 117
rtol, 117
set, 117
sign, 116
slope, 116
step, 116
tol, 116
var, 116

variables, 116
match, 113
max, 117
method, 46, 51

INDEX 182

min, 117
minlen, 59
misalign, 47, 62, 88, 95, 109
model, 46
move, 35, 62
mredx, mredy, 52
mresx, mresy, 52
mtable, 71
mu1, 110
mu2, 111
mu3, 111
mult, 55

n, 14
n_bessel, 52
name, 32, 88, 95, 96, 109, 110, 136, 137
name_of, 60, 72
nbunch, 40
ncol, 72
Nelder-Mead, 122
new_particle, 40
Newton, 122
Newton-Raphson, 122
ngen, 72
none, 54, 55
novector, 71
npart, 40
nrow, 72
nslice, 46, 53
nturn, 53

object, 28
__init(self), 30
class, 29
creation, 28
deferred expressions, 30
dynamic lookup, 28
incomplete, 29
object model, 28
prototypical object, 28
single inheritance, 28

observe, 88, 95, 109
observed, 54
octagon, 56
open_env, 35
origin, 71, 88, 95, 109, 136
owner, 59, 71

parent, 32
particle, 39, 43
patch, 44

pattern, 65, 77
pc, 39
pc2, 39
phi, 89
phix, 111
phiy, 111
playout, 54
plot

debug, 139
info, 139

plot, 139
pnl, psl, 52
polygon, 56
Principal-Axis, 122
print, 76
psi, 89
pt, 96, 110
publish, 62
px, 96, 110
py, 96, 110

q1, 109
q2, 109
q3, 109
qsad, 55
Quasi-Newton, 122

racetrack, 56
range, 53, 88, 96, 110, 136
range_of, 60, 72
raw_get, 36
raw_len, 36
raw_set, 36
read, 75
rectangle, 56
rectcircle, 56
rectellipse, 56
refcol, 71, 88, 95, 109, 136
refer, 59
reflect, 62
refpos, 46, 64
remcol, 73
remove, 35, 62, 75
remove_sat, 48
remrow, 74
rencol, 73
replace, 62
replace_sat, 48
reserve, 71
restore_flags, 63
restore_sel, 76

INDEX 183

rfcav, 55
rx, 137
ry, 137

s, 88, 96, 110, 137
same, 33
save_flags, 63
save_sel, 76
select, 47, 61, 65, 74, 78
selected, 54, 77
sequence, 53, 59
set, 73
set_final, 33
set_flags, 35
set_metamethods, 34
set_methods, 34
set_readonly, 33, 63, 75
set_variables, 34, 40
setcol, 73
setrow, 73
share, 62
shared, 65, 137
showdb, 40, 43
sige, 40
sign, 117
sigt, 40
Simplex, 122
siter, 61
slc, 89, 96, 110
slope, 117
sort, 35, 75
specl, 44
spin, 39
spos, 59
square, 56
status, 96, 110
step, 117
subelem, 65
survey

A0, 86
atdebug, 87
atentry, 87
atexit, 87
atsave, 87
atslice, 87
debug, 87
dir, 86
implicit, 86
info, 87
mflow, 87

eidx, 88
mflw, 88
misalign, 86
mtbl, 88
nslice, 86
nstep, 86
nturn, 86
observe, 86
range, 85
s0, 86
save, 86
savemap, 87
savesel, 86
sequence, 85
title, 86
usrdef, 87
X0, 86

survey, 85
swprow, 74
synch_1, 109
synch_2, 109
synch_3, 110
synch_4, 110
synch_5, 110
synch_6, 110
synch_8, 110

t, 96, 110
table, 65
tdir, 89, 96, 110
test_flags, 35
theta, 89
thick, 44
thin, 44
tilt, 46, 55, 88
time, 71, 88, 95, 109, 136
title, 71, 88, 95, 109, 136
tol, 117, 118
totalpath, 52
track

ataper, 94
atdebug, 94
atentry, 94
atexit, 94
atsave, 94
atslice, 94
beam, 91
debug, 95
deltap, 91
dir, 91

INDEX 184

fringe, 93
implicit, 93
info, 95
mapdef, 93
method, 93
mflow, 95
eidx, 95
mflw, 95
misalign, 93
model, 93
mtbl, 95
nslice, 92
nstep, 92
nturn, 91
O0, 91
observe, 94
ptcmodel, 93
radiate, 93
range, 91
s0, 91
save, 93
savemap, 94
savesel, 94
sequence, 91
title, 94
totalpath, 93
usrdef, 95
X0, 91

track, 91
true_rbend, 50
turn, 89, 96, 110
twiss

ataper, 107
atdebug, 108
atentry, 107
atexit, 107
atsave, 108
atslice, 107
beam, 104
chrom, 104
codiff, 108
coiter, 108
cotol, 108
coupling, 105
debug, 108
deltap, 104
dir, 104
fringe, 106
implicit, 106
info, 108

mapdef, 106
method, 106
mflow, 108
eidx, 109
mflw, 108
misalign, 106
model, 106
mtbl, 108
nslice, 106
nstep, 106
nturn, 106
O0, 104
observe, 107
ptcmodel, 106
radiate, 106
range, 104
s0, 104
save, 107
savemap, 107
savesel, 107
sequence, 104
title, 107
totalpath, 107
usrdef, 108
X0, 104
X1, 108

twiss, 104
type, 71, 88, 95, 109, 136

unique, 62
update, 53
upos, 60
userdata, 25

v, 14
var_get, 36
var_val, 36
vkick, 51, 137
vkick_old, 137
volt, 52

wrap_variables, 34
write, 75
wx, 111
wy, 111

x, 88, 96, 110, 137
x_old, 137
xoff, yoff, 55

y, 89, 96, 110, 137

INDEX 185

y_old, 137

z, 89

	I General
	Introduction
	Presentation
	Installation
	Releases version

	Interactive Mode
	Batch Mode
	Online Help

	Scripting
	Lua and LuaJIT
	Lua primer
	Variables
	Control flow
	Functions
	Tables
	Methods

	Extensions
	Line comment
	Unary plus
	Local in table
	Lambda function
	Deferred expression
	Ranges
	Lua syntax and extensions

	Types
	Value vs reference

	Concepts
	Ecosystem

	Objects
	Creation
	Constructors
	Incomplete objects
	Classes
	Identification
	Customizing creation

	Inheritance
	Reading attributes
	Writing attributes
	Class instances
	Examples

	Attributes
	Methods
	Metamethods
	Flags
	Environments

	Beams
	Attributes
	Methods
	Metamethods
	Particles database
	Particle charges
	Examples

	Beta0 Blocks
	Attributes
	Methods
	Metamethods
	Examples

	Elements
	Taxonomy
	Attributes
	Methods
	Metamethods
	Elements
	SBend
	RBend
	Quadrupole
	Sextupole
	Octupole
	Decapole
	Dodecapole
	Solenoid
	Multipole
	TKicker
	Kicker, HKicker, VKicker
	Monitor, HMonitor, VMonitor
	RFCavity
	RFMultipole
	ElSeparator
	Wiggler
	BeamBeam
	GenMap
	SLink
	Translate
	XRotation, YRotation, SRotation
	ChangeRef
	ChangeDir
	ChangeNrj

	Flags
	Fringe fields
	Sub-elements
	Aperture
	Misalignment

	Sequences
	Attributes
	Methods
	Metamethods
	Sequences creation
	Elements positions
	Elements selections
	Indexes, names and counts
	Iterators and ranges
	Examples
	FODO cell
	SPS compact description
	Installing elements I
	Installing elements II

	MTables
	Attributes
	Methods
	Metamethods
	MTables creation
	Rows selections
	Indexes, names and counts
	Iterators and ranges
	Examples
	Creating a MTable
	Extending a MTable

	MADX
	Environment
	Importing Sequences
	Converting Scripts
	Converting Macros

	II Commands
	Introduction
	Survey
	Command synopsis
	Survey mtable
	Geometrical tracking
	Slicing
	Sub-elements

	Examples

	Track
	Command synopsis
	Track mtable
	Dynamical tracking
	Slicing
	Sub-elements
	Particles status

	Examples

	Cofind
	Command synopsis
	Cofind mtable
	Examples

	Twiss
	Command synopsis
	Twiss mtable
	Tracking linear normal form
	Examples

	Match
	Command synopsis
	Environment
	Command
	Variables
	Constraints
	Objective
	Algorithms
	Stopping criteria
	Objective function
	Derivatives

	Console output
	Modules
	LSopt
	NLopt

	Examples
	Matching tunes and chromaticity
	Matching interaction point
	Fitting data
	Fitting data with derivatives
	Minimizing function

	Correct
	Command synopsis
	Correct mtable
	Examples

	Emit
	Plot
	Command synopsis

	III Physics
	Introduction
	Local reference system
	Global reference system

	Geometric Maps
	Dynamic Maps
	Integrators
	Orbit
	Closed Orbit

	Optics
	Normal Forms
	Misalignments
	Aperture
	Radiation

	IV Modules
	Introduction
	Types
	Constants
	Generic Utilities
	Generic Math
	Range
	Complex
	Matrix
	GTPSA
	DA Map
	Generic Physics
	External modules

	V Programming
	Introduction
	MAD environment
	Tests
	Adding Tests

	Elements
	Adding Elements

	Commands
	Adding Commands

	Modules
	Adding Modules
	Embedding Modules

	Using C FFI

	VI Appendix
	GitHub Repository
	Contributors
	Bibliography
	Index

