MAD-NG Reference Manual

Laurent Deniau
Accelerator Beam Physics,
CERN, Meyrin, Switzerland.

Abstract

The Methodical Accelerator Design — Next Generation application is an all-in-one
standalone versatile tool for particle accelerator design, modeling, and optimiz-
ation, and for beam dynamics and optics studies. Its general purpose scripting
language is based on the simple yet powerful Lua programming language (with
a few extensions) and embeds the state-of-art Just-In-Time compiler LualIT. Its
physics is based on symplectic integration of differential maps made out of GT-
PSA (Generalized Truncated Power Series). The physics of the transport maps
and the normal form analysis were both strongly inspired by the PTC/FPP library
from E. Forest. MAD-NG development started in 2016 by the author as a side
project of MAD-X, hence MAD-X users should quickly become familiar with its
ecosystem, e.g. lattices definition.

http://cern.ch/mad

Keywords
Methodical Accelerator Design; Accelerator beam physics; Scientific comput-
ing; JIT compiler; C and Lua programming.

Contents

I LANGUAGE

1 Introduction

1 Presentation e e e e
2 Installation e
3 Interactive Mode L e e
4 BatchMode e e
5 Online Help e e

Scripting
Luaand LualIT 0 . e
Luaprimer o L e e e e e e
Extensions e e
TYPES . . o e e e
CONCEPLS v o e e e e e e e e e e e e
Ecosystem L e

NN AW =N

Objects
Creation L e e e e e e
Inheritance L e e
Attributes . . . L L e e e e e e
Methods e e e e
Metamethods e e e e e e
Flags o e
Environments e e e e e

~N O\ DN BN = W

Beams
Attributes . . . L L L e e e e
Methods e e e
Metamethods e e e
Particles database L e
Particle charges e
Examples L e

AN DN kWD =&

5 Beta0 Blocks

1 Attributes . .. L L e e e e e e e e
2 Methods e e e e
3 Metamethods e e e e e e e
4 Examples L e e e e e e

6 Elements

1 Taxonomy e e e e e
2 Attributes . . . L L e e e e
3 Methods e e e e
4 Metamethods e e e e e e
5 Elements e e e e e e

10
11
12

14
14
15
18
23
24
25

26
26
28
31
32
36
37
37

39
39
41
41
41
42
42

44
44
44
44
44

O 0 1 O\ L A~ W= — O 00 3 &\

0NN B~ W =R

B WO = \O

IT

Flags o e 58
Fringe fields e 58
Sub-elements L e e e e e e e e 59
APCITUIe o o e e e e e e e 59
Misalignment e e e e e e e 61
Sequences 63
Attributes L e e e e e e e e e e e 63
Methods L e 64
Metamethods L e e e e e e e e e 68
Sequences Creation i e e e e e e e e e e e e e e e e 68
Element positions 69
Element selections e e 70
Indexes, names and COUNtS e e e e e e e e e 71
Iterators and ranges e e e e e e e e 72
Examples e e e e e 73
MTables 78
Attributes . . . L e e e e e e e e e 78
Methods L e 79
Metamethods e e e e e e e e 84
MTables creation e e e e e e e 85
Rows selections e e e e e e e 85
Indexes, names and COUNES oL e e e e e 86
Iterators and ranges L. e e 87
Examples e 88
MADX 91
Environment L e e e e e e 91
Importing Sequences L e 91
Converting SCripts o e e e e e 91
Converting Macros e e 91
ELEMENTS & COMMANDS 92
Survey 93
Command SYnopsiS oL e e e e e e e e 93
Survey mtable 96
Geometrical tracking L 98
Examples o 99
Track 100
Command SYnopsis e e e e e e e 101
Track mtable e 105
Dynamical tracking e e 107
Examples o o e 108

Cofind 109

1 Command Synopsis e e e 109
2 Cofindmtable e 114
3 Examples L e e e e e 115
13 Twiss 116
1 Command SYynopsis e e 116
2 Twissmtable e 121
3 Tracking linear normal form L oL 126
4 Examples o e 126
14 Match 127
1 Command SYnopsiS oL e e e e e e e 127
2 Environment 129
3 Command e e e e 130
4 Variables L e 130
5 Constraints o e e e e e e e e e e e 132
6 Objective o 135
7 Algorithms o e e e e e 137
8 Console output e e 140
9 Modules e 143
10 Examples o e 145
15 Correct 152
1 Command SYNopsSiS oL e e e e e e e e 152
2 Correctmtable e e e 155
3 Examples. e 156
16 Emit 157
17 Plot 158
1 Command SYNOPSIS o i e e e e e e e e e e e e 158
I PHYSICS 159
18 Introduction 160
1 Local reference System o i i e e e e e e e 160
2 Global reference system L 160
19 Geometric Maps 162
20 Dynamic Maps 163
21 Integrators 164
22 Orbit 165
1 Closed Orbit o e e 165

23 Optics 166

24

25

26

27

~N NN R W=

33

DB W =

Normal Forms
Misalignments
Aperture

Radiation

MODULES

Types
Typeids e e e e e e e
Concepts o e
CType Sizes o o e e e e e
CAPL . . e

Constants
Numerical Constants e e e e e e e e e e e e
Mathematical Constants e e e e e e e
Physical Constants e e e e e e

Functions
Mathematical Functions e e
Operators as Functions e
Bitwise Functions e e e
Special Functions L
CAPL . . e
References L e

Functors
CONSIIUCLOTS o v e e e e e e e e e e e e e
Functions e

Monomials
CONSIIUCLOIS v vt e e e e e e e e e e e e e e
Attributes . . . L L e e e e
Functions L e e e e e
Methods e e e e e
OPETatOTS v v v et e e e e e e e e e e e e e
Tterators e e e e e e e
CAPL . . e e

Numerical Ranges
CONSITUCIOTS v v e o e
Attributes . . . L L e e e e e e
Functions L e e e
Methods e e e
OPErators v v i it e e e e

167
168
169

170

171

172
172
173
176
176

178
178
178
179

181
181
185
187
188
188
189

190
190
191

192
192
192
192
192
194
194
194

6 Tterators e e 201
34 Random Numbers 202
1 COoNtrUCIOrS o v e e e e e e e e 202
2 Functions e e e 202
3 Methods e 203
4 Tterators e e e e e 203
5 C APL . . 204
6 References L e 204
35 Complex Numbers 205
1 Types promotion L. e e e e e e e e e 205
2 CONSIIUCLOIS o vt e e e e e e e e e e 205
3 Attributes . . . L L e e e e 206
4 Functions e 206
5 Methods e e 206
6 OPErators o v v i it e e e e e e 208
7 C APL . e 209
8 References L e 212
36 Linear Algebra 213
1 Types promotion e e e e e e e e e e e e e e e 213
2 CONSIIUCLOTS o o o e e e e e e e e e e e e e 214
3 Attributes L L e e 214
4 Functions e e 214
5 Methods e e 215
6 OPEIatOrS . . . v v v v o e e e e e e e e e e e e e e e e e e 237
7 Tterators e e 241
8 C APL . . e 242
9 References L e 251
37 Differential Algebra 252
1 Introduction e 252
2 CONSIIUCLOTS v o o e e e e e e e e e e e e e 256
3 Functions e 256
4 Methods e e e 256
5 OPETAtOrS v v ot e e e e e e e e e e e e e e 256
6 Tterators e e 256
7 C APL . . e 256
38 Differential Maps 257
1 Introduction e 257
2 CONSIIUCLOTS o o e e e e e e e e e e e e e 257
3 Functions e e 257
4 Methods e e 257
5 OPErators v v o e e e e e e e e e e e e e 257
6 Tterators e e e e 257
7 CAPL . . e 257

0. 7
39 Miscellaneous Functions 258
1 Files Functions e e 258
2 Formating Functions e e 258
3 Strings Functions L L e e 258
4 Tables Functions e e 259
5 Iterable Functions e e 259
6 Mappable Functions e e e e 259
7 Conversion Functions e e 260
8 Generic Functions e 260
9 Special Functions Lo 260
40 Generic Physics 261
41 External modules 262
V PROGRAMMING 263
42 MAD environment 264
43 Tests 265
1 Adding Tests L e e e 265
44 Elements 266
1 Adding Elements oL e 266
45 Commands 267
1 Adding Commands e e e 267
46 Modules 268
1 Adding Modules L. 268
2 Embedding Modules e 268
47 Using C FFI 269
VI Indices and tables 270
Bibliography 272
Index 273

Part 1

LANGUAGE

Chapter 1. Introduction

1 Presentation

The Methodical Accelerator Design — Next Generation application is an all-in-one standalone versatile tool
for particle accelerator design, modeling, and optimization, and for beam dynamics and optics studies. Its
general purpose scripting language is based on the simple yet powerful Lua programming language (with a
few extensions) and embeds the state-of-art Just-In-Time compiler LuaJIT. Its physics is based on symplectic
integration of differential maps made out of GTPSA (Generalized Truncated Power Series). The physics of
the transport maps and the normal form analysis were both strongly inspired by the PTC/FPP library from
E. Forest. MAD-NG development started in 2016 by the author as a side project of MAD-X, hence MAD-X
users should quickly become familiar with its ecosystem, e.g. lattices definition.

MAD-NG is free open-source software, distributed under the GNU General Public License v3.! The source
code, units tests”, integration tests, and examples are all available on its Github repository, including the
documentation and its LaTeX source. For convenience, the binaries and few examples are also made available
from the releases repository located on the AFS shared file system at CERN.

2 Installation

Download the binary corresponding to your platform from the releases repository and install it in a local
directory. Update (or check) that the PATH environment variable contains the path to your local directory
or prefix mad with this path to run it. Rename the application from mad-arch-v.m.n to mad and make it
executable with the command ‘chmod u+x mad’ on Unix systems or add the . exe extension on Windows.

$./mad - h
usage: ./mad [options]... [script [args]...].
Available options are:
- e chunk Execute string 'chunk'.
- 1 name Require library 'name'.
-b ... Save or list bytecode.
- j cmd Perform JIT control command.
- O[opt] Control JIT optimizations.
-1 Enter interactive mode after executing 'script'.
-q Do not show version information.
- M Do not load MAD environment.
- Mt[=num] Set initial MAD trace level to 'num'.
- MT[=num] Set initial MAD trace level to 'num' and location.
- E Ignore environment variables.

-- Stop handling options.
- Execute stdin and stop handling options.

! MAD-NG embeds the libraries FFTW NFFT and NLopt released under GNU (L)GPL too.
2 MAD-NG has few thousands unit tests that do few millions checks, and it is constantly growing.

https://github.com/MethodicalAcceleratorDesign/MAD
https://github.com/MethodicalAcceleratorDesign/MADdocs
http://cern.ch/mad/releases/madng/
http://cern.ch/mad/releases/madng/
http://github.com/FFTW
http://github.com/NFFT
http://github.com/stevengj/nlopt

1. INTERACTIVE MODE 10

2.1 Releases version

MAD-NG releases are tagged on the Github repository and use mangled binary names on the releases repos-
itory, i.e. mad-arch-v.m.n where:
arch
is the platform architecture for binaries among 1inux, macos and windows.

v
is the version number, ® meaning beta-version under active development.
m
is the major release number corresponding to features completeness.
n

is the minor release number corresponding to bug fixes.

3 Interactive Mode

To run MAD-NG in interactive mode, just typewrite its name on the Shell invite like any command-line tool.
It is recommended to wrap MAD-NG with the readline wrapper rlwrap in interactive mode for easier use
and commands history:

$ rlwrap ./mad

Methodical Accelerator Design
release: 0.9.0 (0SX 64)
support: http://cern.ch/mad
licence: GPL3 (C) CERN 2016+
started: 2020-08-01 20:13:51

/SN N/ N/ -\
S I) I
/) It S) S /

> print "hello world!"
hello world!"

Here the application is assumed to be installed in the current directory ‘.” and the character ‘>’ is the prompt
waiting for user input in interactive mode. If you write an incomplete statement, the interpreter waits for its
completion by issuing a different prompt:

> print -- 1st level prompt, incomplete statement
>> "hello world!" -- 2nd level prompt, complete the statement
hello world! -- execute

Typing the character ‘=" right after the 1st level prompt is equivalent to call the print function:

> = "hello world!" -- 1st level prompt followed by =
hello world! -- execute print "hello world!"
> = MAD.option.numfmt

% -.10g

To quit the application typewrite Crt1+D to send EOF (end-of-file) on the input,®> or Crtl+\ to send the
SIGQUIT (quit) signal, or Crt1+C to send the stronger SIGINT (interrupt) signal. If the application is stalled

? Note that sending Crt1+D twice from MAD-NG invite will quit both MAD-NG and its parent Shell...

http://github.com/hanslub42/rlwrap

1. ONLINE HELP 11

or looping for ever, typewriting a single Crt1+\ or Crt1+C twice will stop it:

> while true do end -- loop forever, 1st Crtl+C doesn't stop it
pending interruption in VM! (next will exit) -- 2nd Crtl+C
interrupted! -- application stopped

> while true do end -- loop forever, a single Crtl+\ does stop it
Quit: 3 -- Signal 3 caught, application stopped

In interactive mode, each line input is run in its own chunk®, which also rules variables scopes. Hence
local, variables are not visible between chunks, i.e. input lines. The simple solutions are either to use

global variables or to enclose local statements into the same chunk delimited by the do ... end keywords:
> local a = "hello"
> print(a.." world!™)
stdin:1: attempt to concatenate global 'a' (a nil value)
stack traceback:
stdin:1: in main chunk
[C]: at 0x01000325c0O
> do -- 1st level prompt, open the chunck
>> local a = "hello" -- 2nd level prompt, waiting for statement completion
>> print(a.." world!") -- same chunk, local 'a' is visible
>> end -- close and execute the chunk
hello world!
> print(a) -- here 'a' is an unset global variable
nil
> a = "hello" -- set global 'a’
> print(a.." world!") -- works but pollutes the global environment

hello world!

4 Batch Mode

To run MAD-NG in batch mode, just run it in the shell with files as arguments on the command line:

$./mad [mad options] myscriptl.mad myscript2.mad ...

where the scripts contains programs written in the MAD-NG programming language (see Scripting).

* A chunk is the unit of execution in Lua (see Lua 5.2 §3.3.2).

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

1. ONLINE HELP 12

S Online Help

MAD-NG is equipped with an online help system> useful in interactive mode to quickly search for information
displayed in the man-like Unix format :

> help(Q
Related topics:
MADX, aperture, beam, cmatrix, cofind, command, complex, constant, correct,
ctpsa, cvector, dynmap, element, filesys, geomap, gfunc, gmath, gphys, gplot,
gutil, hook, lfun, linspace, logrange, logspace, match, matrix, mflow,
monomial, mtable, nlogrange, nrange, object, operator, plot, range, reflect,
regex, sequence, strict, survey, symint, symintc, tostring, totable, tpsa,
track, twiss, typeid, utest, utility, vector.

> help "MADX"
NAME
MADX environment to emulate MAD-X workspace.

SYNOPSIS
local lhcbl in MADX

DESCRIPTION

This module provide the function 'load' that read MADX sequence and optics
files and load them in the MADX global variable. If it does not exist, it will
create the global MADX variable as an object and load into it all elements,
constants, and math functions compatible with MADX.

RETURN VALUES
The MADX global variable.

EXAMPLES

MADX:open()

-- inline definition
MADX:close()

SEE ALSO
element, object.

Complementary to the help function, the function show displays the type and value of variables, and if they
have attributes, the list of their names in the lexicographic order:

> show "hello world!"
:string: hello world!
> show(MAD.option)
:table: MAD.option

(continues on next page)

5 The online help is far incomplete and will be completed, updated and revised as the application evolves.

1. ONLINE HELP

13

(continued from previous page)

colwidth
hdrwidth
intfmt
madxenv
nocharge
numfmt
ptcmodel
strimt

:number: 18

:number: 18

:string: % -10d
:boolean: false
:boolean: false
:string: % -.10g
:boolean: false
:string: % -25s

14

Chapter 2. Scripting

The choice of the scripting language for MAD-NG was sixfold: the simplicity and the completeness of the
programming language, the portability and the efficiency of the implementation, and its easiness to be ex-
tended and embedded in an application. In practice, very few programming languages and implementations
fulfill these requirements, and Lua and his Just-In-Time (JIT) compiler LuaJIT were not only the best solu-
tions but almost the only ones available when the development of MAD-NG started in 2016.

1 Luaand LuaJIT

The easiest way to shortly describe these choices is to cite their authors.

“Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural program-
ming, object-oriented programming, functional programming, data-driven programming, and data descrip-
tion. Lua combines simple procedural syntax with powerful data description constructs based on associative
arrays and extensible semantics. Lua is dynamically typed and has automatic memory management with
incremental garbage collection, making it ideal for configuration, scripting, and rapid prototyping.”!

“LualIT is widely considered to be one of the fastest dynamic language implementations. It has outperformed
other dynamic languages on many cross-language benchmarks since its first release in 2005 — often by a
substantial margin — and breaks into the performance range traditionally reserved for offline, static language
compilers.”?

Lua and LualIT are free open-source software, distributed under the very liberal MIT license.

MAD-NG embeds a patched version of LuaJIT 2.1, a very efficient implementation of Lua 5.2.> Hence, the
scripting language of MAD-NG is Lua 5.2 with some extensions detailed in the next section, and used for
both, the development of most parts of the application, and as the user scripting language. There is no strong
frontier between these two aspects of the application, giving full access and high flexibility to the experienced
users. The filename extension of MAD-NG scripts is .mad.

Learning Lua is easy and can be achieved within a few hours. The following links should help to quickly
become familiar with Lua and LuaJIT:

Lua website.

— Lua 5.2 manual for MAD-NG (30 p. PDF).
Lua 5.0 free online book (old).

LuaJIT website.

LualIT wiki.

LualIT 2.1 documentation.

LuaJIT 2.1 on GitHub.

! This text is taken from the “What is Lua?” section of the Lua website.
2 This text is taken from the “Overview” section of the LuaJIT website.
3 The ENV feature of Lua 5.2 is not supported and will never be according to M. Pall.

http://www.lua.org
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://www.lua.org/pil/contents.html
http://luajit.org
http://wiki.luajit.org/Home
https://repo.or.cz/w/luajit-2.0.git/blob_plain/v2.1:/doc/luajit.html
https://github.com/LuaJIT/LuaJIT

2. CONTROL FLOW 15

2 Lua primer

The next subsections introduce the basics of the Lua programming language with syntax highlights, namely
variables, control flow, functions, tables and methods.*

2.1 Variables

n = 42 -- All numbers are doubles, but the JIT may specialize them.
-- IEEE-754 64-bit doubles have 52 bits for storing exact int values;
-- machine precision is not a problem for ints < lelé6.

s = 'walternate' -- Immutable strings like Python.
t = "double-quotes are also fine"
u = [[Double brackets

start and end

multi-line strings.]]
v = "double-quotes \z

are also fine" -- \z eats next whitespaces

t, u, v = nil -- Undefines t, u, v.
-- Lua has multiple assignments and nil completion.
-- Lua has garbage collection.
-- Undefined variables return nil. This is not an error:
foo = anUnknownVariable -- Now foo = nil.

2.2 Control flow

-- Blocks are denoted with keywords like do/end:
while n < 50 do

n=n+1 -- No ++ or += type operators.
end

-- If clauses:
if n > 40 then
print('over 40')
elseif s ~= 'walternate' then -- ~= is not equals.
Equality check is == like Python; ok for strs.
io.write('not over 40\n') -- Defaults to stdout.
else
-- Variables are global by default.
thisIsGlobal = 5 -- Camel case is common.

(continues on next page)

* This primer was adapted from the blog “Learn Lua in 15 minutes” by T. Neylon.

2. FUNCTIONS

16

(continued from previous page)

-- How to make a variable local:

local line = io.read() -- Reads next stdin line.
-- String concatenation uses the .. operator:
print('Winter is coming, '..line)

end

-- Only nil and false are falsy; 0 and " are true!
aBoolValue = false
if not aBoolValue then print('was false') end

-- 'or' and 'and' are short-circuited.
-- This is similar to the a?b:c operator in C/js:

1. '

ans = aBoolValue and 'yes' or 'nmo' --> ans = 'no

-- numerical for begin, end[, step] (end included)
revSum = 0
for j = 100, 1, -1 do revSum = revSum + j end

2.3 Functions

function fib(n)
if n < 2 then return 1 end
return fib(n - 2) + fib(n - 1)
end

-- Closures and anonymous functions are ok:
function adder(x)
-- The returned function is created when adder is
-- called, and captures the value of Xx:
return function (y) return x + y end
end
al = adder(9)
a2 = adder(36)
print(al(1l6)) --> 25
print(a2(64)) --> 100

-- Returns, func calls, and assignments all work with lists
-- that may be mismatched in length.
-- Unmatched receivers get nil; unmatched senders are discarded.

w

X,y,2z=1,2, 3,4
-- Now x =1, y =2, z = 3, and 4 is thrown away.

function bar(a, b, ©)

(continues on next page)

2. TABLES 17

(continued from previous page)

print(a, b,)
return 4, 8, 15, 16, 23, 42
end

X, ¥y = bar('zaphod') --> prints "zaphod nil nil"
-- Now x = 4, y = 8, values 15,..,42 are discarded.

-- Functions are first-class, may be local/global.
-- These are the same:

function f(x) return x * x end

f = function (x) return x * x end

-- And so are these:

local function g(x) return math.sin(x) end

local g; g = function (x) return math.sin(x) end
-- the 'local g' decl makes g-self-references ok.

-- Calls with one string param don't need parens:
print 'hello' -- Works fine.

2.4 Tables

-- Tables = Lua's only compound data structure;
-- they are associative arrays, i.e. hash-lookup dicts;
-- they can be used as lists, i.e. sequence of non-nil values.

-- Dict literals have string keys by default:
t = {keyl = 'valuel', key2 = false, ['key.3'] = true }

-- String keys looking as identifier can use dot notation:
print(t.keyl, t['key.3']) -- Prints 'valuel true'.

-- print(t.key.3) -- Error, needs explicit indexing by string
t.newKey = {} -- Adds a new key/value pair.
t.key2 = nil -- Removes key2 from the table.

-- Literal notation for any (non-nil) value as key:
u={['@#'] = "gbert', [{}] = 1729, [6.28] = "tau'}
print(u[6.28]) -- prints "tau"

-- Key matching is basically by value for numbers
-- and strings, but by identity for tables.

a =u['@#'] -- Now a = 'gbert'.

b = ul{}] -- We might expect 1729, but it's nil:

(continues on next page)

2. LINE COMMENT 18

(continued from previous page)

-- A one-table-param function call needs no parens:
function h(x) print(x.keyl) end

h{keyl = 'Sonmi~451'} -- Prints 'Sonmi~451'.

for key, val in pairs(u) do -- Table iteration.
print(key, val)

end

-- List literals implicitly set up int keys:
1 = {'valuel', 'value2', 1.21, 'gigawatts'}

for i,v in ipairs(l) do -- List iteration.
print(i,v,1[i]) -- Indices start at 1 !
end
print("length=", #1) -- # is defined only for sequence.

-- A 'list' is not a real type, 1 is just a table

-- with consecutive integer keys, treated as a list,

--1.e. 1 = {[1]='valuel', [2]='value2', [3]=1.21, [4]='gigawatts'}
-- A 'sequence' is a list with non-nil values.

2.5 Methods

-- Methods notation:

-- function tblname:fn(...) is the same as

- function tblname.fn(self, ...) with self being the table.

-- calling tblname:fn(...) is the same as

- tblname. fn(tblname, ...) here self becomes the table.

t = { disp=function(s) print(s.msg) end, -- Method 'disp'
msg="Hello world!" }

t:disp() -- Prints "Hello world!"

function t:setmsg(msg) self.msg=-msg end -- Add a new method 'setmsg’

t:setmsg "Good bye!"

t:disp() -- Prints "Good bye!"

3 Extensions

The aim of the extensions patches applied to the embedded LualJIT in MAD-NG is to extend the Lua syntax
in handy directions, like for example to support the deferred expression operator. A serious effort has been
put to develop a Domain Specific Language (DSL) embedded in Lua using these extensions and the native
language features to mimic as much as possible the syntax of MAD-X in the relevant aspects of the language,
like the definition of elements, lattices or commands, and ease the transition of MAD-X users.

Bending and extending a programming language like Lua to embed a DSL is more general and challenging
than creating a freestanding DSL like in MAD-X. The former is compatible with the huge codebase written

2. LAMBDA FUNCTION 19

by the Lua community, while the latter is a highly specialized niche language. The chosen approach attempts
to get the best of the two worlds.

3.1 Line comment

The line comment operator ! is valid in MAD-NG, but does not exists in Lua:’

local a =1 ! this remaining part is a comment
local b = 2 -- line comment in Lua

3.2 Unary plus

The unary plus operator + is valid in MAD-NG, but does not exists in Lua:’

local a
local b

+1 -- syntax error in Lua
+a -- syntax error in Lua

3.3 Local in table

The local in table syntax provides a convenient way to retrieve values from a mappable and avoid error-prone
repetitions of attributes names. The syntax is as follows:

local sin, cos, tan in math -- syntax error in Lua
local a, b, ¢ in { a=1, b=2, c=3 }
!a, b, c in { a=1, b=2, c=3 } -- invalid with global variables

which is strictly equivalent to the Lua code:

local sin, cos, tan = math.sin, math.cos, math.tan

local tbl = { a=1, b=2, c=3 }

local a, b, ¢ = tbhl.a, tbl.b, tbl.c

! local sin, cos, tan = math.cos, math.sin, math. tan -- nasty typo

The JIT has many kinds of optimization to improve a lot the execution speed of the code, and these work much
better if variables are declared 1local with minimal lifespan. This language extension is of first importance
for writing fast clean code!

5 This feature was introduced to ease the automatic translation of lattices from MAD-X to MAD-NG.

2. LAMBDA FUNCTION 20

3.4 Lambda function

The lambda function syntax is pure syntactic sugar for function definition and therefore fully compatible with
the Lua semantic. The following definitions are all semantically equivalent:

local f = function(x) return x*2 end -- Lua syntax

local f = \x x*2 -- most compact form
local £ = \x -> x/2 -- most common form
local £ = \(®) -> x*2 -- for readability
local £ = \(x) > (x"2) -- less compact form
local f = \x (x%2) -- uncommon valid form
local £ = \(x) x*2 -- uncommon valid form
local £ = \(x) (x*2) -- uncommon valid form

The important point is that no space must be present between the lambda operator \ and the first formal
parameter or the first parenthesis; the former will be considered as an empty list of parameters and the
latter as an expressions list returning multiple values, and both will trigger a syntax error. For the sake of
readability, it is possible without changing the semantic to add extra spaces anywhere in the definition, add
an arrow operator ->, or add parentheses around the formal parameter list, whether the list is empty or not.

The following examples show lambda functions with multiple formal parameters:

local f = function(x,y) return x+y end -- Lua syntax

local f = \x x+y -- most compact form
local f = \x,y -> x+y -- most common form
local £f = \x, v >x +y -- aerial style

The lambda function syntax supports multiple return values by enclosing the list of returned expressions
within (not optional!) parentheses:

local f = function(x,y) return x+y, x-y end -- Lua syntax
local f = \x,y(x+y,x-y) -- most compact form
local f = \x,y -—> (X+y,x-y) -- most common form

Extra surrounding parentheses can also be added to disambiguate false multiple return values syntax:

local f = function(x,y) return (x+y)/2 end -- Lua syntax

local f = \x,y > ((x+y)/2) -- disambiguation: single value returned
! local f = \x,y -> (x+y)/2 -- invalid syntax at /'

local f = function(x,y) return (x+y)*(x-y) end -- Lua syntax

local f = \x,y > ((x+y)*(x-y)) -- disambiguation: single value returned

151

! local f = \x,y -> (x+y)*(x-y) -- invalid syntax at

It is worth understanding the error message that invalid syntaxes above would report,

file:1line: attempt to perform arithmetic on a function value. }

as it is a bit subtle and needs some explanations: the lambda is syntactically closed at the end of the returned

2. RANGES 21

expression (x+y), and the following operations / or * are considered as being outside the lambda definition,
that is applied to the freshly created function itself...

Finally, the lambda function syntax supports full function syntax (for consistency) using the fat arrow oper-
ator => in place of the arrow operator:

local c =0
local f = function(x) c=c+1 return x*2 end -- Lua syntax
local f = \x => c=c+1 return x*2 end -- most compact form

The fat arrow operator requires the end keyword to close syntactically the lambda function, and the return
keyword to return values (if any), as in Lua functions definitions.

3.5 Deferred expression

The deferred expression operator : = is semantically equivalent to a lambda function without argument. It is
syntactically valid only inside table constructors (see Lua 5.2 §3.4.8):

local var = 10

local fun = \-> var

! Jocal fun := var -- invalid syntax outside table constructors
local tbl = { vl := var, v2 =\-> var, v3 = var }

print(tbl.v1(), tbl.v2(), tbl.v3, fun()) -- display: 10 10 10 10
var = 20

print(tbl.v1(), tbl.v2(), tbl.v3, fun()) -- display: 20 20 10 20

The deferred expressions hereabove have to be explicitly called to retrieve their values, because they are
defined in a table. It is a feature of the object model making the deferred expressions behaving like values.
Still, it is possible to support deferred expressions as values in a raw table, i.e. a table without metatable,
using the deferred function from the fypeid module:

local deferred in MAD.typeid
local var = 10

local tbl = deferred { vl := var, v2 =\-> var, v3 = var }
print(tbl.vl, tbl.v2, tbl.v3) -- display: 10 10 10
var = 20

print(tbl.vl, tbl.v2, tbl.v3) -- display: 20 20 10

3.6 Ranges

The ranges are created from pairs or triplets of concatenated numbers:®

start..stop..step -- order is the same as numerical 'for'
start..stop -- default step is 1
3..4 -- spaces are not needed around concat operator

(continues on next page)

® This is the only feature of MAD-NG that is incompatible with the semantic of Lua.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

2. TYPES 22

(continued from previous page)

3..4..0.1 -- floating numbers are handled
4..3..-0.1 -- negative steps are handled
stop..start..-step -- operator precedence

The default value for unspecified step is 1. The Lua syntax has been modified to accept concatenation
operator without surrounding spaces for convenience.

Ranges are iterable and lengthable so the following code excerpt is valid:

local rng = 3..4..0.1
print(#rng) -- display: 11
for i,v in ipairs(rng) do print(i,v) end

More details on ranges can be found in the Range module, especially about the range and logrange con-
structors that may adjust step to ensure precise loops and iterators behaviors with floating-point numbers.

3.7 Lua syntax and extensions

The operator precedence (see Lua 5.2 §3.4.7) is recapped and extended in Table 2.1 with their precedence
level (on the left) from lower to higher priority and their associativity (on the right).

Table2.1: Operators precedence with priority and associativity.

1: or left
2: and left
3 <><=>=~===[eft
4: . right
5: + - (binary) left
6: */% left
7: not#-+ (unary) left
8 A right
9: .10 (call) left

The string literals, table constructors, and lambda definitions can be combined with function calls (see Lua
5.2 §3.4.9) advantageously like in the object model to create objects in a similar way to MAD-X. The fol-
lowing function calls are semantically equivalent by pairs:

! with parentheses ! without parentheses
func('hello world!") func 'hello world!'
func("hello world!") func "hello world!"
func([[hello world!]]) func [[hello world!]]
func({...fields...}) func {...fields...}
func(\x -> xA2) func \x -> xA2

func(\x,y -> (x+y,x-y)) func \x,y -> (x+y,x-y)

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

2. TYPES 23

4 Types

MAD-NG is based on Lua, a dynamically typed programming language that provides the following basic
types often italicized in this textbook:

nil
The type of the value nil. Uninitialized variables, unset attributes, mismatched arguments, mis-
matched return values etc, have nil values.
boolean
The type of the values true and false.
number
The type of IEEE 754 double precision floating point numbers. They are exact for integers up to £253
(~ +10'%). Values like 0, 1, 1e3, 1e-3 are numbers.
string
The type of character strings. Strings are “internalized” meaning that two strings with the same content
compare equal and share the same memory address: a="hello"; b="hello"; print(a==b) --
display: true.
table
The type of tables, see Lua 5.2 §3.4.8 for details. In this textbook, the following qualified
types are used to distinguish between two kinds of special use of tables:
— A list is a table used as an array, that is a table indexed by a continuous sequence of integers
starting from 1 where the length operator # has defined behavior.’
— A set is a table used as a dictionary, that is a table indexed by keys — strings or other types —
or a sparse sequence of integers where the length operator # has undefined behavior.
function
The type of functions, see Lua 5.2 §3.4.10 for details. In this textbook, the following qual-
ified types are used to distinguish between few kinds of special use of functions:
— A lambda is a function defined with the \ syntax.
— A functor is an object® that behaves like a function.
— A method is a function called with the : syntax and its owner as first argument. A method defined
with the : syntax has an implicit first argqument named self’
thread
The type of coroutines, see Lua 5.2 §2.6 for details.
userdata

The type of raw pointers with memory managed by Lua, and its companion lightuserdata with memory
managed by the host language, usually C. They are mainly useful for interfacing Lua with its C API,
but MAD-NG favors the faster FFI'? extension of LuaJIT.

cdata
The type of C data structures that can be defined, created and manipulated directly from Lua as part
of the FFI?22¢23:10 extension of LualIT. The numeric ranges, the complex numbers, the (complex)
matrices, and the (complex) GTPSA are cdata fully compatible with the embedded C code that operates

" The Lua community uses the term sequence instead of list, which is confusing is the context of MAD-NG.
8 Here the term “object” is used in the Lua sense, not as an object from the object model of MAD-NG.

® This hidden methods argument is named self in Lua and Python, or this in Java and C++.

10 FFI stands for Foreign Function Interface, an acronym well known in high-level languages communities.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

2. ECOSYSTEM 24

them.

This textbook uses also some extra terms in place of types:
value
An instance of any type.

reference
A valid memory location storing some value.

logical
A value used by control flow, where nil = false and anything-else = true.

4.1 Value vs reference

The types nil, boolean and number have a semantic by value, meaning that variables, arguments, return
values, etc., hold their instances directly. As a consequence, any assignment makes a copy of the value, i.e.
changing the original value does not change the copy.

The types string, function, table, thread, userdata and cdata have a semantic by reference, meaning that
variables, arguments, return values, etc., do not store their instances directly but a reference to them. As a
consequence, any assignment makes a copy of the reference and the instance becomes shared, i.e. references
have a semantic by value but changing the content of the value does change the copy.'!

The types string, function'?, thread, cpx cdata and numeric (log)range cdata have a hybrid semantic. In
practice these types have a semantic by reference, but they behave like types with semantic by value because
their instances are immutable, and therefore sharing them is safe.

5 Concepts

The concepts are natural extensions of types that concentrate more on behavior of objects® than on types.
MAD-NG introduces many concepts to validate objects passed as argument before using them. The main
concepts used in this textbook are listed below, see the typeid module for more concepts:
lengthable
An object that can be sized using the length operator #. Strings, lists, vectors and ranges are examples
of lengthable objects.

indexable
An object that can be indexed using the square bracket operator []. Tables, vectors and ranges are
examples of indexable objects.

iterable
An object that can be iterated with a loop over indexes or a generic for with the ipairs iterator. Lists,
vectors and ranges are examples of iterable objects.

mappable
An object that can be iterated with a loop over keys or a generic for with the pairs iterator. Sets and
objects (from the object model) are examples of mappable objects.

! References semantic in Lua is similar to pointers semantic in C, see ISO/IEC 9899:1999 §6.2.5.
12 Local variables and upvalues of functions can be modified using the debug module.

2. ECOSYSTEM

25

callable An object that can be called using the call operator (). Functions and functors are examples of
callable objects.

6 Ecosystem

Fig. 2.1 shows a schematic representation of the ecosystem of MAD-NG, which should help the users to
understand the relatioship between the different components of the application. The dashed lines are grouping

the items (e.g. modules) by topics while the arrows are showing interdependencies between them and the
colors their status.

Legend

A exposes B Ais-aB A uses B Ob]ects Commands Geo/LinAlg
Ae—>B A-ee) »8 A—B

Dyn/ lefAIg

Done Dev Todo

Algorithms MAD-NG
Solvers, Eigen, . Core
FFT, Optimisers Unit Tests (VM+]IT+FFI)

v'----.

l
Plot ' ' MTable N = =~
Match l‘ ——____- GIS
~----
S MADX Env ' A
[\

Elements

Linear ToolBox
Real & Complex
Vector & Matrix

Geometric
3D Maps

-
R Y

-y =

. Symplectic
Integrators

DA Toolbox AT
1 Real & Complex Dynamic
i GTPSA 6D Maps
A
A
A
.

Normal form
Optical Funs

Figure2.1: MAD-NG ecosystem and status.

26

Chapter 3. Objects

The object model is of key importance as it implements many features used extensively by objects like beam,
sequence, mtable, all the commands, all the elements, and the MADX environment. The aim of the object
model is to extend the scripting language with concepts like objects, inheritance, methods, metamethods,
deferred expressions, commands and more.

In computer science, the object model of MAD-NG is said to implement the concepts of prototypical objects,
single inheritance and dynamic lookup of attributes:

— A prototypical object is an object created from a prototype,' named its parent.

— Single inheritance specifies that an object has only one direct parent.

— Dynamic lookup means that undefined attributes are searched in the parents at each read.
A prototype represents the default state and behavior, and new objects can reuse part of the knowledge stored
in the prototype by inheritance, or by defining how the new object differs from the prototype. Because any

object can be used as a prototype, this approach holds some advantages for representing default knowledge,
and incrementally and dynamically modifying them.

1 Creation

The creation of a new object requires to hold a reference to its parent, i.e. the prototype, which indeed will
create the child and return it as if it were returned from a function:

local object in MAD
local obj = object { }

The special root object object from the MAD environment is the parent of all objects, including elements,
sequences, TFS tables and commands. It provides by inheritance the methods needed to handle objects,
environments, and more. In this minimalist example, the created object has object as parent, so it is the
simplest object that can be created.

It is possible to name immutably an object during its creation:

local obj = object 'myobj' { }
print(obj.name) -- display: myobj

Here,” obj is the variable holding the object while the string 'myobj' is the name of the object. It is
important to distinguish well the variable that holds the object from the object’s name that holds the string,
because they are very often named the same.

It is possible to define attributes during object creation or afterward:

local obj = object 'myobj' { a=1, b="hello' }
obj.c = { d=5 } -- add a new attribute c
print(obj.name, obj.a, obj.b, obj.c.d) -- display: myobj 1 hello 5

! Objects are not clones of prototypes, they share states and behaviors with their parents but do not hold copies.
2 This syntax for creating objects eases the lattices translation from MAD-X to MAD-NG.

3. INCOMPLETE OBJECTS 27

1.1 Constructors

The previous object creation can be done equivalently using the prototype as a constructor:

local obj = object('myobj',{ a=1, b='hello' })

An object constructor expects two arguments, an optional string for the name, and a required fable for the
attributes placeholder, optionally filled with initial attributes. The table is used to create the object itself, so
it cannot be reused to create a different object:

local attr = { a=1, b="hello' }
local objl = object('objl',attr) -- ok
local obj2 = object('obj2',attr) -- runtime error, attr is already used.

The following objects creations are all semantically equivalent but use different syntax that may help to
understand the creation process and avoid runtime errors:

-- named objects:

local nobj = object 'myobj' { } -- two stages creation.
local nobj = object 'myobj' ({ }) -- idem.

local nobj = object('myobj') { } -- idem.

local nobj = object('myobj')({ }) -- idem.

local nobj = object('myobj', { }) -- one stage creation.
-- unnamed objects:

local uobj = object { } -- one stage creation.
local uobj = object ({ }) -- idem.

local uobj = object() { } -- two stages creation.
local uobj = objectQ({ }) -- idem.

local uobj = object(nil,{ }) -- one stage creation.

1.2 Incomplete objects

The following object creation shows how the two stage form can create an incomplete object that can only
be used to complete its construction:

local obj = object 'myobj’ -- obj is incomplete, table is missing
print (obj.name) -- runtime error.

obj = obj { } -- now obj is complete.

print (obj.name) -- display: myobj

Any attempt to use an incomplete object will trigger a runtime error with a message like:

file:line: forbidden read access to incomplete object.

or

3. INHERITANCE 28

file:1line: forbidden write access to incomplete object.

depending on the kind of access.

1.3 Classes

An object used as a prototype to create new objects becomes a class, and a class cannot change, add, remove
or override its methods and metamethods. This restriction ensures the behavioral consistency between the
children after their creation. An object qualified as final cannot create instances and therefore cannot become
a class.

1.4 Identification

The object module extends the typeid module with the is_object (a) function, which returns true if its
argument a is an object, false otherwise:

local is_object in MAD.typeid
print(is_object(object), is_object(object{}), is_object{})
-- display: true true false

It is possible to know the objects qualifiers using the appropriate methods:

print(object:is_class(), object:is_final(), object:is_readonly())
-- display: true false true

1.5 Customizing creation

During the creation process of objects, the metamethod __init (self) is invoked if it exists, with the newly
created object as its sole argument to let the parent finalize or customize its initialization before it is returned.
This mechanism is used by commands to run their : exec() method during their creation.

2 Inheritance

The object model allows to build tree-like inheritance hierarchy by creating objects from classes, themselves
created from other classes, and so on until the desired hierarchy is modeled. The example below shows an
excerpt of the taxonomy of the elements as implemented by the element module, with their corresponding
depth levels in comment:

local object in MAD -- depth level 1
local element = object {...} -- depth level 2

local drift_element = element {...} -- depth level 3
local instrument = drift_element {...} -- depth level 4

(continues on next page)

3. WRITING ATTRIBUTES 29

(continued from previous page)

local monitor = instrument {...} -- depth level 5
local hmonitor = monitor {...} -- depth level 6
local vmonitor = monitor {...} -- depth level 6
local thick_element = element {...} -- depth level 3
local tkicker = thick_element {...} -- depth level 4
local kicker = tkicker {...} -- depth level 5
local hkicker = kicker {...} -- depth level 6
local vicker = kicker {...} -- depth level 6

2.1 Reading attributes

Reading an attribute not defined in an object triggers a recursive dynamic lookup along the chain of its
parents until it is found or the root object is reached. Reading an object attribute defined as a function
automatically evaluates it with the object passed as the sole argument and the returned value is forwarded
to the reader as if it were the attribute’s value. When the argument is not used by the function, it becomes
a deferred expression that can be defined directly with the operator := as explained in section Deferred
expression. This feature allows to use attributes holding values and functions the same way and postpone
design decisions, e.g. switching from simple value to complex calculations without impacting the users side
with calling parentheses at every use.

The following example is similar to the second example of the section Deferred expression, and it must be
clear that fun must be explicitly called to retrieve the value despite that its definition is the same as the
attribute v2.

local var = 10

local fun = \-> var -- here := is invalid

local obj = object { vl := var, v2 =\-> var, v3 = var }
print(obj.vl, obj.v2, obj.v3, fun()) -- display: 10 10 10 10
var = 20

print(obj.vl, obj.v2, obj.v3, fun()) -- display: 20 20 10 20

2.2 Writing attributes

Writing to an object uses direct access and does not involve any lookup. Hence setting an attribute with a
non-nil value in an object hides his definition inherited from the parents, while setting an attribute with nil
in an object restores the inheritance lookup:

local objl = object { a=1, b="hello' }

local obj2 objl { a=\s-> s.b..' world' }
print(objl.a, obj2.a) -- display: 1 hello world
obj2.a = nil

print(objl.a, obj2.a) -- display: 1 1

3. EXAMPLES 30

This property is extensively used by commands to specify their attributes default values or to rely on other
commands attributes default values, both being overridable by the users.

It is forbidden to write to a read-only objects or to a read-only attributes. The former can be set using
the :readonly method, while the latter corresponds to attributes with names that start by __, i.e. two
underscores.

2.3 C(Class instances

To determine if an object is an instance of a given class, use the : is_instanceOf method:

local hmonitor, instrument, element in MAD.element
print (hmonitor:is_instanceOf(instrument)) -- display: true

To get the list of public attributes of an instance, use the :get_varkeys method:

for _,a in ipairs(hmonitor:get_varkeys()) do print(a) end

for _,a in ipairs(hmonitor:get_varkeys(object)) do print(a) end
for _,a in ipairs(hmonitor:get_varkeys(instrument)) do print(a) end
for _,a in ipairs(element:get_varkeys()) do print(a) end

The code snippet above lists the names of the attributes set by:

the object hmonitor (only).

the objects in the hierachy from hmonitor to object included.

the objects in the hierachy from hmonitor to instrument included.

the object element (only), the root of all elements.

2.4 Examples

Clone: parents are prototypes used to create children (chained)

elements .. Read: attributes are sought in the chain of parents (if needed)
circuits | \yyito- attributes are set/overridden only in elements (no lookup)
L ! y ;
qf| 4 \ class kind
qd| \ -
> gf2 mq |€— quadrupole "('—““

Figure3.1: Object model and inheritance.

Fig. 3.1 summarizes inheritance and attributes lookup with arrows and colors, which are reproduced by the
example hereafter:

3. ATTRIBUTES 31

local element, quadrupole in MAD.element -- kind

local mq = quadrupole 'mg' {1 = 2.1 } -- class

local qf = mq 'qf' { k1l = 0.05 } -- circuit

local qd = mg 'qd' { k1 = -0.06 } -- circuit

local gfl = gf "gf1" {} -- element

... —-- more elements

print(qfl.k1) -- display: 0.05 (lookup)

qf.k1 = 0.06 -- update strength of 'qf' circuit
print(qfl.k1) -- display: 0.06 (lookup)

qfl.k1 = 0.07 -- set strength of 'qf1' element
print(qf.k1l, qfl.k1) -- display: 0.06 0.07 (no lookup)
gfl.kl = nil -- cancel strength of 'qfl1' element
print(qfl.k1, qfl.1) -- display: 0.06 2.1 (lookup)
print(#element:get_varkeys()) -- display: 33 (may vary)

The element quadrupole provided by the element module is the father of the objects created on its left. The
black arrows show the user defined hierarchy of object created from and linked to the quadrupole. The
main quadrupole mq is a user class representing the physical element, e.g. defining a length, and used to
create two new classes, a focusing quadrupole qf and a defocusing quadrupole qd to model the circuits, e.g.
hold the strength of elements connected in series, and finally the real individual elements qf1, qd1, qf2 and
qd2 that will populate the sequence. A tracking command will request various attributes when crossing an
element, like its length or its strength, leading to lookup of different depths in the hierarchy along the red
arrow. A user may also write or overwrite an attribute at different level in the hierarchy by accessing directly
to an element, as shown by the purple arrows, and mask an attribute of the parent with the new definitions
in the children. The construction shown in this example follows the separation of concern principle and it is
still highly reconfigurable despite that is does not contain any deferred expression or lambda function.

3 Attributes

New attributes can be added to objects using the dot operator . or the indexing operator [] as for tables.
Attributes with non-string keys are considered as private. Attributes with string keys starting by two under-
scores are considered as private and read-only, and must be set during creation:

mg.comment = "Main Arc Quadrupole"

print(qfl.comment) -- displays: Main Arc Quadrupole
gf.__kl = 0.01 -- error

qf2 = qf { __k1=0.01 } -- ok

The root object provides the following attributes:
name
A lambda returning the string __id.

parent
A lambda returning a reference to the parent object.

Warning: the following private and read-only attributes are present in all objects as part of the object model
and should never be used, set or changed; breaking this rule would lead to an undefined behavior:

3. METHODS 32

__id
A string holding the object’s name set during its creation.
__par
A reference holding the object’s parent set during its creation.
fig
A number holding the object’s flags.

__var
A table holding the object’s variables, i.e. pairs of (key, value).

__env
A table holding the object’s environment.

__index
A reference to the object’s parent variables.

4 Methods

New methods can be added to objects but not classes, using the :set_methods(set) method with set
being the set of methods to add as in the following example:

sequence :set_methods {

name_of = name_of,
index_of = index_of,
range_of = range_of,

length_of = length_of,

where the keys are the names of the added methods and their values must be a callable accepting the object
itself, i.e. self, as their first argument. Classes cannot set new methods.

The root object provides the following methods:
is_final

A method () returning a boolean telling if the object is final, i.e. cannot have instance.
is_class

A method () returning a boolean telling if the object is a class, i.e. had/has an instance.

is_readonly
A method () returning a boolean telling if the object is read-only, i.e. attributes cannot be changed.

is_instanceOf
A method (cls) returning a boolean telling if self is an instance of cls.

set_final
A method ([a]) returning self set as final if a ~= false or non-final.

set_readonly
A method ([a]) returning self set as read-only if a ~= false or read-write.

same
A method ([name]) returning an empty clone of self and named after the string name (default: nil).