
MAD-NG Reference Manual
Laurent Deniau
Accelerator Beam Physics,
CERN, Meyrin, Switzerland.

Abstract
The Methodical Accelerator Design – Next Generation application is an all-in-one
standalone versatile tool for particle accelerator design, modeling, and optimiz-
ation, and for beam dynamics and optics studies. Its general purpose scripting
language is based on the simple yet powerful Lua programming language (with
a few extensions) and embeds the state-of-art Just-In-Time compiler LuaJIT. Its
physics is based on symplectic integration of differential maps made out of GT-
PSA (Generalized Truncated Power Series). The physics of the transport maps
and the normal form analysis were both strongly inspired by the PTC/FPP library
from E. Forest. MAD-NG development started in 2016 by the author as a side
project of MAD-X, hence MAD-X users should quickly become familiar with its
ecosystem, e.g. lattices definition.

http://cern.ch/mad

Keywords
Methodical Accelerator Design; Accelerator beam physics; Scientific comput-
ing; JIT compiler; C and Lua programming.

2

Contents

I LANGUAGE 8

1 Introduction 9
1 Presentation . 9
2 Installation . 9
3 Interactive Mode . 10
4 Batch Mode . 11
5 Online Help . 12

2 Scripting 14
1 Lua and LuaJIT . 14
2 Lua primer . 15
3 Extensions . 18
4 Types . 23
5 Concepts . 24
6 Ecosystem . 25

3 Objects 26
1 Creation . 26
2 Inheritance . 28
3 Attributes . 31
4 Methods . 32
5 Metamethods . 36
6 Flags . 37
7 Environments . 37

4 Beams 39
1 Attributes . 39
2 Methods . 41
3 Metamethods . 41
4 Particles database . 41
5 Particle charges . 42
6 Examples . 42

5 Beta0 Blocks 44
1 Attributes . 44
2 Methods . 44
3 Metamethods . 44
4 Examples . 44

6 Elements 45
1 Taxonomy . 45
2 Attributes . 47
3 Methods . 49
4 Metamethods . 50
5 Elements . 51

3

6 Flags . 58
7 Fringe fields . 58
8 Sub-elements . 59
9 Aperture . 59
10 Misalignment . 61

7 Sequences 63
1 Attributes . 63
2 Methods . 64
3 Metamethods . 68
4 Sequences creation . 68
5 Element positions . 69
6 Element selections . 70
7 Indexes, names and counts . 71
8 Iterators and ranges . 72
9 Examples . 73

8 MTables 78
1 Attributes . 78
2 Methods . 79
3 Metamethods . 84
4 MTables creation . 85
5 Rows selections . 85
6 Indexes, names and counts . 86
7 Iterators and ranges . 87
8 Examples . 88

9 MADX 91
1 Environment . 91
2 Importing Sequences . 91
3 Converting Scripts . 91
4 Converting Macros . 91

II ELEMENTS & COMMANDS 92

10 Survey 93
1 Command synopsis . 93
2 Survey mtable . 96
3 Geometrical tracking . 98
4 Examples . 99

11 Track 100
1 Command synopsis . 101
2 Track mtable . 105
3 Dynamical tracking . 107
4 Examples . 108

12 Cofind 109

4

1 Command synopsis . 109
2 Cofind mtable . 114
3 Examples . 115

13 Twiss 116
1 Command synopsis . 116
2 Twiss mtable . 121
3 Tracking linear normal form . 126
4 Examples . 126

14 Match 127
1 Command synopsis . 127
2 Environment . 129
3 Command . 130
4 Variables . 130
5 Constraints . 132
6 Objective . 135
7 Algorithms . 137
8 Console output . 140
9 Modules . 143
10 Examples . 145

15 Correct 152
1 Command synopsis . 152
2 Correct mtable . 155
3 Examples . 156

16 Emit 157

17 Plot 158
1 Command synopsis . 158

III PHYSICS 159

18 Introduction 160
1 Local reference system . 160
2 Global reference system . 160

19 Geometric Maps 162

20 Dynamic Maps 163

21 Integrators 164

22 Orbit 165
1 Closed Orbit . 165

23 Optics 166

5

24 Normal Forms 167

25 Misalignments 168

26 Aperture 169

27 Radiation 170

IV MODULES 171

28 Types 172
1 Typeids . 172
2 Concepts . 173
3 C Type Sizes . 176
4 C API . 176

29 Constants 178
1 Numerical Constants . 178
2 Mathematical Constants . 178
3 Physical Constants . 179

30 Functions 181
1 Mathematical Functions . 181
2 Operators as Functions . 185
3 Bitwise Functions . 187
4 Special Functions . 188
5 C API . 188
6 References . 189

31 Functors 190
1 Constructors . 190
2 Functions . 191

32 Monomials 192
1 Constructors . 192
2 Attributes . 192
3 Functions . 192
4 Methods . 192
5 Operators . 194
6 Iterators . 194
7 C API . 194

33 Numerical Ranges 197
1 Constructors . 197
2 Attributes . 198
3 Functions . 198
4 Methods . 199
5 Operators . 200

6

6 Iterators . 201

34 Random Numbers 202
1 Contructors . 202
2 Functions . 202
3 Methods . 203
4 Iterators . 203
5 C API . 204
6 References . 204

35 Complex Numbers 205
1 Types promotion . 205
2 Constructors . 205
3 Attributes . 206
4 Functions . 206
5 Methods . 206
6 Operators . 208
7 C API . 209
8 References . 212

36 Linear Algebra 213
1 Types promotion . 213
2 Constructors . 214
3 Attributes . 214
4 Functions . 214
5 Methods . 215
6 Operators . 237
7 Iterators . 241
8 C API . 242
9 References . 251

37 Differential Algebra 252
1 Introduction . 252
2 Constructors . 256
3 Functions . 256
4 Methods . 256
5 Operators . 256
6 Iterators . 256
7 C API . 256

38 Differential Maps 257
1 Introduction . 257
2 Constructors . 257
3 Functions . 257
4 Methods . 257
5 Operators . 257
6 Iterators . 257
7 C API . 257

0. 7

39 Miscellaneous Functions 258
1 Files Functions . 258
2 Formating Functions . 258
3 Strings Functions . 258
4 Tables Functions . 259
5 Iterable Functions . 259
6 Mappable Functions . 259
7 Conversion Functions . 260
8 Generic Functions . 260
9 Special Functions . 260

40 Generic Physics 261

41 External modules 262

V PROGRAMMING 263

42 MAD environment 264

43 Tests 265
1 Adding Tests . 265

44 Elements 266
1 Adding Elements . 266

45 Commands 267
1 Adding Commands . 267

46 Modules 268
1 Adding Modules . 268
2 Embedding Modules . 268

47 Using C FFI 269

VI Indices and tables 270

Bibliography 272

Index 273

8

Part I

LANGUAGE

9

Chapter 1. Introduction

1 Presentation

The Methodical Accelerator Design – Next Generation application is an all-in-one standalone versatile tool
for particle accelerator design, modeling, and optimization, and for beam dynamics and optics studies. Its
general purpose scripting language is based on the simple yet powerful Lua programming language (with a
few extensions) and embeds the state-of-art Just-In-Time compiler LuaJIT. Its physics is based on symplectic
integration of differential maps made out of GTPSA (Generalized Truncated Power Series). The physics of
the transport maps and the normal form analysis were both strongly inspired by the PTC/FPP library from
E. Forest. MAD-NG development started in 2016 by the author as a side project of MAD-X, hence MAD-X
users should quickly become familiar with its ecosystem, e.g. lattices definition.

MAD-NG is free open-source software, distributed under the GNU General Public License v3.1 The source
code, units tests2, integration tests, and examples are all available on its Github repository, including the
documentation and its LaTeX source. For convenience, the binaries and few examples are also made available
from the releases repository located on the AFS shared file system at CERN.

2 Installation

Download the binary corresponding to your platform from the releases repository and install it in a local
directory. Update (or check) that the PATH environment variable contains the path to your local directory
or prefix mad with this path to run it. Rename the application from mad-arch-v.m.n to mad and make it
executable with the command ‘chmod u+x mad’ on Unix systems or add the .exe extension on Windows.

$./mad - h
usage: ./mad [options]... [script [args]...].
Available options are:

- e chunk Execute string 'chunk'.
- l name Require library 'name'.
- b ... Save or list bytecode.
- j cmd Perform JIT control command.
- O[opt] Control JIT optimizations.
- i Enter interactive mode after executing 'script'.
- q Do not show version information.
- M Do not load MAD environment.
- Mt[=num] Set initial MAD trace level to 'num'.
- MT[=num] Set initial MAD trace level to 'num' and location.
- E Ignore environment variables.
-- Stop handling options.
- Execute stdin and stop handling options.

1 MAD-NG embeds the libraries FFTW NFFT and NLopt released under GNU (L)GPL too.
2 MAD-NG has few thousands unit tests that do few millions checks, and it is constantly growing.

https://github.com/MethodicalAcceleratorDesign/MAD
https://github.com/MethodicalAcceleratorDesign/MADdocs
http://cern.ch/mad/releases/madng/
http://cern.ch/mad/releases/madng/
http://github.com/FFTW
http://github.com/NFFT
http://github.com/stevengj/nlopt

1. INTERACTIVE MODE 10

2.1 Releases version

MAD-NG releases are tagged on the Github repository and use mangled binary names on the releases repos-
itory, i.e. mad-arch-v.m.n where:

arch
is the platform architecture for binaries among linux, macos and windows.

v
is the version number, 0 meaning beta-version under active development.

m
is the major release number corresponding to features completeness.

n
is the minor release number corresponding to bug fixes.

3 Interactive Mode

To run MAD-NG in interactive mode, just typewrite its name on the Shell invite like any command-line tool.
It is recommended to wrap MAD-NG with the readline wrapper rlwrap in interactive mode for easier use
and commands history:

$ rlwrap ./mad
____ __ ______ ______ | Methodical Accelerator Design
/ \/ \ / _ \ / _ \ | release: 0.9.0 (OSX 64)
/ __ / / /_/ / / /_/ / | support: http://cern.ch/mad
/__/ /_/ /__/ /_/ /_____ / | licence: GPL3 (C) CERN 2016+

| started: 2020-08-01 20:13:51
> print "hello world!"
hello world!"

Here the application is assumed to be installed in the current directory ‘.’ and the character ‘>’ is the prompt
waiting for user input in interactive mode. If you write an incomplete statement, the interpreter waits for its
completion by issuing a different prompt:

> print -- 1st level prompt, incomplete statement
>> "hello world!" -- 2nd level prompt, complete the statement
hello world! -- execute

Typing the character ‘=’ right after the 1st level prompt is equivalent to call the print function:

> = "hello world!" -- 1st level prompt followed by =
hello world! -- execute print "hello world!"
> = MAD.option.numfmt
% -.10g

To quit the application typewrite Crtl+D to send EOF (end-of-file) on the input,3 or Crtl+\ to send the
SIGQUIT (quit) signal, or Crtl+C to send the stronger SIGINT (interrupt) signal. If the application is stalled

3 Note that sending Crtl+D twice from MAD-NG invite will quit both MAD-NG and its parent Shell. . .

http://github.com/hanslub42/rlwrap

1. ONLINE HELP 11

or looping for ever, typewriting a single Crtl+\ or Crtl+C twice will stop it:

> while true do end -- loop forever, 1st Crtl+C doesn't stop it
pending interruption in VM! (next will exit) -- 2nd Crtl+C
interrupted! -- application stopped

> while true do end -- loop forever, a single Crtl+\ does stop it
Quit: 3 -- Signal 3 caught, application stopped

In interactive mode, each line input is run in its own chunk4, which also rules variables scopes. Hence
local, variables are not visible between chunks, i.e. input lines. The simple solutions are either to use
global variables or to enclose local statements into the same chunk delimited by the do ... end keywords:

> local a = "hello"
> print(a.." world!")

stdin:1: attempt to concatenate global 'a' (a nil value)
stack traceback:
stdin:1: in main chunk
[C]: at 0x01000325c0

> do -- 1st level prompt, open the chunck
>> local a = "hello" -- 2nd level prompt, waiting for statement completion
>> print(a.." world!") -- same chunk, local 'a' is visible
>> end -- close and execute the chunk
hello world!
> print(a) -- here 'a' is an unset global variable
nil
> a = "hello" -- set global 'a'
> print(a.." world!") -- works but pollutes the global environment
hello world!

4 Batch Mode

To run MAD-NG in batch mode, just run it in the shell with files as arguments on the command line:

$./mad [mad options] myscript1.mad myscript2.mad ...

where the scripts contains programs written in the MAD-NG programming language (see Scripting).
4 A chunk is the unit of execution in Lua (see Lua 5.2 §3.3.2).

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

1. ONLINE HELP 12

5 Online Help

MAD-NG is equipped with an online help system5 useful in interactive mode to quickly search for information
displayed in the man-like Unix format :

> help()
Related topics:
MADX, aperture, beam, cmatrix, cofind, command, complex, constant, correct,
ctpsa, cvector, dynmap, element, filesys, geomap, gfunc, gmath, gphys, gplot,
gutil, hook, lfun, linspace, logrange, logspace, match, matrix, mflow,
monomial, mtable, nlogrange, nrange, object, operator, plot, range, reflect,
regex, sequence, strict, survey, symint, symintc, tostring, totable, tpsa,
track, twiss, typeid, utest, utility, vector.

> help "MADX"
NAME
MADX environment to emulate MAD-X workspace.

SYNOPSIS
local lhcb1 in MADX

DESCRIPTION
This module provide the function 'load' that read MADX sequence and optics
files and load them in the MADX global variable. If it does not exist, it will
create the global MADX variable as an object and load into it all elements,
constants, and math functions compatible with MADX.

RETURN VALUES
The MADX global variable.

EXAMPLES
MADX:open()
-- inline definition
MADX:close()

SEE ALSO
element, object.

Complementary to the help function, the function show displays the type and value of variables, and if they
have attributes, the list of their names in the lexicographic order:

> show "hello world!"
:string: hello world!
> show(MAD.option)
:table: MAD.option

(continues on next page)

5 The online help is far incomplete and will be completed, updated and revised as the application evolves.

1. ONLINE HELP 13

(continued from previous page)

colwidth :number: 18
hdrwidth :number: 18
intfmt :string: % -10d
madxenv :boolean: false
nocharge :boolean: false
numfmt :string: % -.10g
ptcmodel :boolean: false
strfmt :string: % -25s

14

Chapter 2. Scripting

The choice of the scripting language for MAD-NG was sixfold: the simplicity and the completeness of the
programming language, the portability and the efficiency of the implementation, and its easiness to be ex-
tended and embedded in an application. In practice, very few programming languages and implementations
fulfill these requirements, and Lua and his Just-In-Time (JIT) compiler LuaJIT were not only the best solu-
tions but almost the only ones available when the development of MAD-NG started in 2016.

1 Lua and LuaJIT

The easiest way to shortly describe these choices is to cite their authors.

“Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural program-
ming, object-oriented programming, functional programming, data-driven programming, and data descrip-
tion. Lua combines simple procedural syntax with powerful data description constructs based on associative
arrays and extensible semantics. Lua is dynamically typed and has automatic memory management with
incremental garbage collection, making it ideal for configuration, scripting, and rapid prototyping.”1

“LuaJIT is widely considered to be one of the fastest dynamic language implementations. It has outperformed
other dynamic languages on many cross-language benchmarks since its first release in 2005 — often by a
substantial margin — and breaks into the performance range traditionally reserved for offline, static language
compilers.”2

Lua and LuaJIT are free open-source software, distributed under the very liberal MIT license.

MAD-NG embeds a patched version of LuaJIT 2.1, a very efficient implementation of Lua 5.2.3 Hence, the
scripting language of MAD-NG is Lua 5.2 with some extensions detailed in the next section, and used for
both, the development of most parts of the application, and as the user scripting language. There is no strong
frontier between these two aspects of the application, giving full access and high flexibility to the experienced
users. The filename extension of MAD-NG scripts is .mad.

Learning Lua is easy and can be achieved within a few hours. The following links should help to quickly
become familiar with Lua and LuaJIT:

– Lua website.
– Lua 5.2 manual for MAD-NG (30 p. PDF).
– Lua 5.0 free online book (old).
– LuaJIT website.
– LuaJIT wiki.
– LuaJIT 2.1 documentation.
– LuaJIT 2.1 on GitHub.

1 This text is taken from the “What is Lua?” section of the Lua website.
2 This text is taken from the “Overview” section of the LuaJIT website.
3 The ENV feature of Lua 5.2 is not supported and will never be according to M. Pall.

http://www.lua.org
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://www.lua.org/pil/contents.html
http://luajit.org
http://wiki.luajit.org/Home
https://repo.or.cz/w/luajit-2.0.git/blob_plain/v2.1:/doc/luajit.html
https://github.com/LuaJIT/LuaJIT

2. CONTROL FLOW 15

2 Lua primer

The next subsections introduce the basics of the Lua programming language with syntax highlights, namely
variables, control flow, functions, tables and methods.4

2.1 Variables

n = 42 -- All numbers are doubles, but the JIT may specialize them.
-- IEEE-754 64-bit doubles have 52 bits for storing exact int values;
-- machine precision is not a problem for ints < 1e16.

s = 'walternate' -- Immutable strings like Python.
t = "double-quotes are also fine"
u = [[Double brackets

start and end
multi-line strings.]]

v = "double-quotes \z

are also fine" -- \z eats next whitespaces
t, u, v = nil -- Undefines t, u, v.
-- Lua has multiple assignments and nil completion.
-- Lua has garbage collection.

-- Undefined variables return nil. This is not an error:
foo = anUnknownVariable -- Now foo = nil.

2.2 Control flow

-- Blocks are denoted with keywords like do/end:
while n < 50 do
n = n + 1 -- No ++ or += type operators.

end

-- If clauses:
if n > 40 then

print('over 40')
elseif s ~= 'walternate' then -- ~= is not equals.
-- Equality check is == like Python; ok for strs.
io.write('not over 40\n') -- Defaults to stdout.

else
-- Variables are global by default.
thisIsGlobal = 5 -- Camel case is common.

(continues on next page)

4 This primer was adapted from the blog “Learn Lua in 15 minutes” by T. Neylon.

2. FUNCTIONS 16

(continued from previous page)

-- How to make a variable local:
local line = io.read() -- Reads next stdin line.
-- String concatenation uses the .. operator:
print('Winter is coming, '..line)

end

-- Only nil and false are falsy; 0 and '' are true!
aBoolValue = false
if not aBoolValue then print('was false') end

-- 'or' and 'and' are short-circuited.
-- This is similar to the a?b:c operator in C/js:
ans = aBoolValue and 'yes' or 'no' --> ans = 'no'

-- numerical for begin, end[, step] (end included)
revSum = 0
for j = 100, 1, -1 do revSum = revSum + j end

2.3 Functions

function fib(n)
if n < 2 then return 1 end
return fib(n - 2) + fib(n - 1)

end

-- Closures and anonymous functions are ok:
function adder(x)
-- The returned function is created when adder is
-- called, and captures the value of x:
return function (y) return x + y end

end
a1 = adder(9)
a2 = adder(36)
print(a1(16)) --> 25
print(a2(64)) --> 100

-- Returns, func calls, and assignments all work with lists
-- that may be mismatched in length.
-- Unmatched receivers get nil; unmatched senders are discarded.

x, y, z = 1, 2, 3, 4
-- Now x = 1, y = 2, z = 3, and 4 is thrown away.

function bar(a, b, c)
(continues on next page)

2. TABLES 17

(continued from previous page)

print(a, b, c)
return 4, 8, 15, 16, 23, 42

end

x, y = bar('zaphod') --> prints "zaphod nil nil"
-- Now x = 4, y = 8, values 15,..,42 are discarded.

-- Functions are first-class, may be local/global.
-- These are the same:
function f(x) return x * x end
f = function (x) return x * x end

-- And so are these:
local function g(x) return math.sin(x) end
local g; g = function (x) return math.sin(x) end
-- the 'local g' decl makes g-self-references ok.

-- Calls with one string param don't need parens:
print 'hello' -- Works fine.

2.4 Tables

-- Tables = Lua's only compound data structure;
-- they are associative arrays, i.e. hash-lookup dicts;
-- they can be used as lists, i.e. sequence of non-nil values.

-- Dict literals have string keys by default:
t = {key1 = 'value1', key2 = false, ['key.3'] = true }

-- String keys looking as identifier can use dot notation:
print(t.key1, t['key.3']) -- Prints 'value1 true'.
-- print(t.key.3) -- Error, needs explicit indexing by string
t.newKey = {} -- Adds a new key/value pair.
t.key2 = nil -- Removes key2 from the table.

-- Literal notation for any (non-nil) value as key:
u = {['@!#'] = 'qbert', [{}] = 1729, [6.28] = 'tau'}
print(u[6.28]) -- prints "tau"

-- Key matching is basically by value for numbers
-- and strings, but by identity for tables.
a = u['@!#'] -- Now a = 'qbert'.
b = u[{}] -- We might expect 1729, but it's nil:

(continues on next page)

2. LINE COMMENT 18

(continued from previous page)

-- A one-table-param function call needs no parens:
function h(x) print(x.key1) end
h{key1 = 'Sonmi~451'} -- Prints 'Sonmi~451'.

for key, val in pairs(u) do -- Table iteration.
print(key, val)

end

-- List literals implicitly set up int keys:
l = {'value1', 'value2', 1.21, 'gigawatts'}
for i,v in ipairs(l) do -- List iteration.
print(i,v,l[i]) -- Indices start at 1 !

end
print("length=", #l) -- # is defined only for sequence.
-- A 'list' is not a real type, l is just a table
-- with consecutive integer keys, treated as a list,
-- i.e. l = {[1]='value1', [2]='value2', [3]=1.21, [4]='gigawatts'}
-- A 'sequence' is a list with non-nil values.

2.5 Methods

-- Methods notation:
-- function tblname:fn(...) is the same as
-- function tblname.fn(self, ...) with self being the table.
-- calling tblname:fn(...) is the same as
-- tblname.fn(tblname, ...) here self becomes the table.
t = { disp=function(s) print(s.msg) end, -- Method 'disp'

msg="Hello world!" }
t:disp() -- Prints "Hello world!"
function t:setmsg(msg) self.msg=msg end -- Add a new method 'setmsg'
t:setmsg "Good bye!"
t:disp() -- Prints "Good bye!"

3 Extensions

The aim of the extensions patches applied to the embedded LuaJIT in MAD-NG is to extend the Lua syntax
in handy directions, like for example to support the deferred expression operator. A serious effort has been
put to develop a Domain Specific Language (DSL) embedded in Lua using these extensions and the native
language features to mimic as much as possible the syntax of MAD-X in the relevant aspects of the language,
like the definition of elements, lattices or commands, and ease the transition of MAD-X users.

Bending and extending a programming language like Lua to embed a DSL is more general and challenging
than creating a freestanding DSL like in MAD-X. The former is compatible with the huge codebase written

2. LAMBDA FUNCTION 19

by the Lua community, while the latter is a highly specialized niche language. The chosen approach attempts
to get the best of the two worlds.

3.1 Line comment

The line comment operator ! is valid in MAD-NG, but does not exists in Lua:5

local a = 1 ! this remaining part is a comment
local b = 2 -- line comment in Lua

3.2 Unary plus

The unary plus operator + is valid in MAD-NG, but does not exists in Lua:5

local a = +1 -- syntax error in Lua
local b = +a -- syntax error in Lua

3.3 Local in table

The local in table syntax provides a convenient way to retrieve values from a mappable and avoid error-prone
repetitions of attributes names. The syntax is as follows:

local sin, cos, tan in math -- syntax error in Lua
local a, b, c in { a=1, b=2, c=3 }
! a, b, c in { a=1, b=2, c=3 } -- invalid with global variables

which is strictly equivalent to the Lua code:

local sin, cos, tan = math.sin, math.cos, math.tan
local tbl = { a=1, b=2, c=3 }
local a, b, c = tbl.a, tbl.b, tbl.c
! local sin, cos, tan = math.cos, math.sin, math.tan -- nasty typo

The JIT has many kinds of optimization to improve a lot the execution speed of the code, and these work much
better if variables are declared local with minimal lifespan. This language extension is of first importance
for writing fast clean code!

5 This feature was introduced to ease the automatic translation of lattices from MAD-X to MAD-NG.

2. LAMBDA FUNCTION 20

3.4 Lambda function

The lambda function syntax is pure syntactic sugar for function definition and therefore fully compatible with
the Lua semantic. The following definitions are all semantically equivalent:

local f = function(x) return x^2 end -- Lua syntax
local f = \x x^2 -- most compact form
local f = \x -> x^2 -- most common form
local f = \(x) -> x^2 -- for readability
local f = \(x) -> (x^2) -- less compact form
local f = \x (x^2) -- uncommon valid form
local f = \(x) x^2 -- uncommon valid form
local f = \(x) (x^2) -- uncommon valid form

The important point is that no space must be present between the lambda operator \ and the first formal
parameter or the first parenthesis; the former will be considered as an empty list of parameters and the
latter as an expressions list returning multiple values, and both will trigger a syntax error. For the sake of
readability, it is possible without changing the semantic to add extra spaces anywhere in the definition, add
an arrow operator ->, or add parentheses around the formal parameter list, whether the list is empty or not.

The following examples show lambda functions with multiple formal parameters:

local f = function(x,y) return x+y end -- Lua syntax
local f = \x x+y -- most compact form
local f = \x,y -> x+y -- most common form
local f = \x, y -> x + y -- aerial style

The lambda function syntax supports multiple return values by enclosing the list of returned expressions
within (not optional!) parentheses:

local f = function(x,y) return x+y, x-y end -- Lua syntax
local f = \x,y(x+y,x-y) -- most compact form
local f = \x,y -> (x+y,x-y) -- most common form

Extra surrounding parentheses can also be added to disambiguate false multiple return values syntax:

local f = function(x,y) return (x+y)/2 end -- Lua syntax
local f = \x,y -> ((x+y)/2) -- disambiguation: single value returned
! local f = \x,y -> (x+y)/2 -- invalid syntax at '/'

local f = function(x,y) return (x+y)*(x-y) end -- Lua syntax
local f = \x,y -> ((x+y)*(x-y)) -- disambiguation: single value returned
! local f = \x,y -> (x+y)*(x-y) -- invalid syntax at '*'

It is worth understanding the error message that invalid syntaxes above would report,

file:line: attempt to perform arithmetic on a function value. }

as it is a bit subtle and needs some explanations: the lambda is syntactically closed at the end of the returned

2. RANGES 21

expression (x+y), and the following operations / or * are considered as being outside the lambda definition,
that is applied to the freshly created function itself. . .

Finally, the lambda function syntax supports full function syntax (for consistency) using the fat arrow oper-
ator => in place of the arrow operator:

local c = 0
local f = function(x) c=c+1 return x^2 end -- Lua syntax
local f = \x => c=c+1 return x^2 end -- most compact form

The fat arrow operator requires the end keyword to close syntactically the lambda function, and the return
keyword to return values (if any), as in Lua functions definitions.

3.5 Deferred expression

The deferred expression operator := is semantically equivalent to a lambda function without argument. It is
syntactically valid only inside table constructors (see Lua 5.2 §3.4.8):5

local var = 10
local fun = \-> var
! local fun := var -- invalid syntax outside table constructors
local tbl = { v1 := var, v2 =\-> var, v3 = var }
print(tbl.v1(), tbl.v2(), tbl.v3, fun()) -- display: 10 10 10 10
var = 20
print(tbl.v1(), tbl.v2(), tbl.v3, fun()) -- display: 20 20 10 20

The deferred expressions hereabove have to be explicitly called to retrieve their values, because they are
defined in a table. It is a feature of the object model making the deferred expressions behaving like values.
Still, it is possible to support deferred expressions as values in a raw table, i.e. a table without metatable,
using the deferred function from the typeid module:

local deferred in MAD.typeid
local var = 10
local tbl = deferred { v1 := var, v2 =\-> var, v3 = var }
print(tbl.v1, tbl.v2, tbl.v3) -- display: 10 10 10
var = 20
print(tbl.v1, tbl.v2, tbl.v3) -- display: 20 20 10

3.6 Ranges

The ranges are created from pairs or triplets of concatenated numbers:6

start..stop..step -- order is the same as numerical 'for'
start..stop -- default step is 1
3..4 -- spaces are not needed around concat operator

(continues on next page)

6 This is the only feature of MAD-NG that is incompatible with the semantic of Lua.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

2. TYPES 22

(continued from previous page)

3..4..0.1 -- floating numbers are handled
4..3..-0.1 -- negative steps are handled
stop..start..-step -- operator precedence

The default value for unspecified step is 1. The Lua syntax has been modified to accept concatenation
operator without surrounding spaces for convenience.

Ranges are iterable and lengthable so the following code excerpt is valid:

local rng = 3..4..0.1
print(#rng) -- display: 11
for i,v in ipairs(rng) do print(i,v) end

More details on ranges can be found in the Range module, especially about the range and logrange con-
structors that may adjust step to ensure precise loops and iterators behaviors with floating-point numbers.

3.7 Lua syntax and extensions

The operator precedence (see Lua 5.2 §3.4.7) is recapped and extended in Table 2.1 with their precedence
level (on the left) from lower to higher priority and their associativity (on the right).

Table2.1: Operators precedence with priority and associativity.

1: or left
2: and left
3: < > <= >= ~= == left
4: .. right
5: + - (binary) left
6: * / % left
7: not # - + (unary) left
8: ^ right
9: . [] () (call) left

The string literals, table constructors, and lambda definitions can be combined with function calls (see Lua
5.2 §3.4.9) advantageously like in the object model to create objects in a similar way to MAD-X. The fol-
lowing function calls are semantically equivalent by pairs:

! with parentheses ! without parentheses
func('hello world!') func 'hello world!'
func("hello world!") func "hello world!"
func([[hello world!]]) func [[hello world!]]
func({...fields...}) func {...fields...}
func(\x -> x^2) func \x -> x^2
func(\x,y -> (x+y,x-y)) func \x,y -> (x+y,x-y)

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

2. TYPES 23

4 Types

MAD-NG is based on Lua, a dynamically typed programming language that provides the following basic
types often italicized in this textbook:
nil

The type of the value nil. Uninitialized variables, unset attributes, mismatched arguments, mis-
matched return values etc, have nil values.

boolean
The type of the values true and false.

number
The type of IEEE 754 double precision floating point numbers. They are exact for integers up to ±253

(≈ ±1016). Values like 0, 1, 1e3, 1e-3 are numbers.
string

The type of character strings. Strings are “internalized” meaning that two strings with the same content
compare equal and share the same memory address: a="hello"; b="hello"; print(a==b) --
display: true.

table
The type of tables, see Lua 5.2 §3.4.8 for details. In this textbook, the following qualified
types are used to distinguish between two kinds of special use of tables:

– A list is a table used as an array, that is a table indexed by a continuous sequence of integers
starting from 1 where the length operator # has defined behavior.7

– A set is a table used as a dictionary, that is a table indexed by keys — strings or other types —
or a sparse sequence of integers where the length operator # has undefined behavior.

function
The type of functions, see Lua 5.2 §3.4.10 for details. In this textbook, the following qual-
ified types are used to distinguish between few kinds of special use of functions:

– A lambda is a function defined with the \ syntax.
– A functor is an object8 that behaves like a function.
– A method is a function called with the : syntax and its owner as first argument. A method defined

with the : syntax has an implicit first argument named self9

thread
The type of coroutines, see Lua 5.2 §2.6 for details.

userdata
The type of raw pointers with memory managed by Lua, and its companion lightuserdata with memory
managed by the host language, usually C. They are mainly useful for interfacing Lua with its C API,
but MAD-NG favors the faster FFI10 extension of LuaJIT.

cdata
The type of C data structures that can be defined, created and manipulated directly from Lua as part
of the FFIPage 23, 10 extension of LuaJIT. The numeric ranges, the complex numbers, the (complex)
matrices, and the (complex) GTPSA are cdata fully compatible with the embedded C code that operates

7 The Lua community uses the term sequence instead of list, which is confusing is the context of MAD-NG.
8 Here the term “object” is used in the Lua sense, not as an object from the object model of MAD-NG.
9 This hidden methods argument is named self in Lua and Python, or this in Java and C++.

10 FFI stands for Foreign Function Interface, an acronym well known in high-level languages communities.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf
http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

2. ECOSYSTEM 24

them.

This textbook uses also some extra terms in place of types:
value

An instance of any type.
reference

A valid memory location storing some value.
logical

A value used by control flow, where nil ≡ false and anything-else ≡ true.

4.1 Value vs reference

The types nil, boolean and number have a semantic by value, meaning that variables, arguments, return
values, etc., hold their instances directly. As a consequence, any assignment makes a copy of the value, i.e.
changing the original value does not change the copy.

The types string, function, table, thread, userdata and cdata have a semantic by reference, meaning that
variables, arguments, return values, etc., do not store their instances directly but a reference to them. As a
consequence, any assignment makes a copy of the reference and the instance becomes shared, i.e. references
have a semantic by value but changing the content of the value does change the copy.11

The types string, function12, thread, cpx cdata and numeric (log)range cdata have a hybrid semantic. In
practice these types have a semantic by reference, but they behave like types with semantic by value because
their instances are immutable, and therefore sharing them is safe.

5 Concepts

The concepts are natural extensions of types that concentrate more on behavior of objects8 than on types.
MAD-NG introduces many concepts to validate objects passed as argument before using them. The main
concepts used in this textbook are listed below, see the typeid module for more concepts:
lengthable

An object that can be sized using the length operator #. Strings, lists, vectors and ranges are examples
of lengthable objects.

indexable
An object that can be indexed using the square bracket operator []. Tables, vectors and ranges are
examples of indexable objects.

iterable
An object that can be iterated with a loop over indexes or a generic for with the ipairs iterator. Lists,
vectors and ranges are examples of iterable objects.

mappable
An object that can be iterated with a loop over keys or a generic for with the pairs iterator. Sets and
objects (from the object model) are examples of mappable objects.

11 References semantic in Lua is similar to pointers semantic in C, see ISO/IEC 9899:1999 §6.2.5.
12 Local variables and upvalues of functions can be modified using the debug module.

2. ECOSYSTEM 25

callable An object that can be called using the call operator (). Functions and functors are examples of
callable objects.

6 Ecosystem

Fig. 2.1 shows a schematic representation of the ecosystem of MAD-NG, which should help the users to
understand the relatioship between the different components of the application. The dashed lines are grouping
the items (e.g. modules) by topics while the arrows are showing interdependencies between them and the
colors their status.

Figure2.1: MAD-NG ecosystem and status.

26

Chapter 3. Objects

The object model is of key importance as it implements many features used extensively by objects like beam,
sequence, mtable, all the commands, all the elements, and the MADX environment. The aim of the object
model is to extend the scripting language with concepts like objects, inheritance, methods, metamethods,
deferred expressions, commands and more.

In computer science, the object model of MAD-NG is said to implement the concepts of prototypical objects,
single inheritance and dynamic lookup of attributes:

– A prototypical object is an object created from a prototype,1 named its parent.
– Single inheritance specifies that an object has only one direct parent.
– Dynamic lookup means that undefined attributes are searched in the parents at each read.

A prototype represents the default state and behavior, and new objects can reuse part of the knowledge stored
in the prototype by inheritance, or by defining how the new object differs from the prototype. Because any
object can be used as a prototype, this approach holds some advantages for representing default knowledge,
and incrementally and dynamically modifying them.

1 Creation

The creation of a new object requires to hold a reference to its parent, i.e. the prototype, which indeed will
create the child and return it as if it were returned from a function:

local object in MAD
local obj = object { }

The special root object object from the MAD environment is the parent of all objects, including elements,
sequences, TFS tables and commands. It provides by inheritance the methods needed to handle objects,
environments, and more. In this minimalist example, the created object has object as parent, so it is the
simplest object that can be created.

It is possible to name immutably an object during its creation:

local obj = object 'myobj' { }
print(obj.name) -- display: myobj

Here,2 obj is the variable holding the object while the string 'myobj' is the name of the object. It is
important to distinguish well the variable that holds the object from the object’s name that holds the string,
because they are very often named the same.

It is possible to define attributes during object creation or afterward:

local obj = object 'myobj' { a=1, b='hello' }
obj.c = { d=5 } -- add a new attribute c
print(obj.name, obj.a, obj.b, obj.c.d) -- display: myobj 1 hello 5

1 Objects are not clones of prototypes, they share states and behaviors with their parents but do not hold copies.
2 This syntax for creating objects eases the lattices translation from MAD-X to MAD-NG.

3. INCOMPLETE OBJECTS 27

1.1 Constructors

The previous object creation can be done equivalently using the prototype as a constructor:

local obj = object('myobj',{ a=1, b='hello' })

An object constructor expects two arguments, an optional string for the name, and a required table for the
attributes placeholder, optionally filled with initial attributes. The table is used to create the object itself, so
it cannot be reused to create a different object:

local attr = { a=1, b='hello' }
local obj1 = object('obj1',attr) -- ok
local obj2 = object('obj2',attr) -- runtime error, attr is already used.

The following objects creations are all semantically equivalent but use different syntax that may help to
understand the creation process and avoid runtime errors:

-- named objects:
local nobj = object 'myobj' { } -- two stages creation.
local nobj = object 'myobj' ({ }) -- idem.
local nobj = object('myobj') { } -- idem.
local nobj = object('myobj')({ }) -- idem.
local nobj = object('myobj', { }) -- one stage creation.
-- unnamed objects:
local uobj = object { } -- one stage creation.
local uobj = object ({ }) -- idem.
local uobj = object() { } -- two stages creation.
local uobj = object()({ }) -- idem.
local uobj = object(nil,{ }) -- one stage creation.

1.2 Incomplete objects

The following object creation shows how the two stage form can create an incomplete object that can only
be used to complete its construction:

local obj = object 'myobj' -- obj is incomplete, table is missing
print(obj.name) -- runtime error.
obj = obj { } -- now obj is complete.
print(obj.name) -- display: myobj

Any attempt to use an incomplete object will trigger a runtime error with a message like:

file:line: forbidden read access to incomplete object.

or

3. INHERITANCE 28

file:line: forbidden write access to incomplete object.

depending on the kind of access.

1.3 Classes

An object used as a prototype to create new objects becomes a class, and a class cannot change, add, remove
or override its methods and metamethods. This restriction ensures the behavioral consistency between the
children after their creation. An object qualified as final cannot create instances and therefore cannot become
a class.

1.4 Identification

The object module extends the typeid module with the is_object(a) function, which returns true if its
argument a is an object, false otherwise:

local is_object in MAD.typeid
print(is_object(object), is_object(object{}), is_object{})
-- display: true true false

It is possible to know the objects qualifiers using the appropriate methods:

print(object:is_class(), object:is_final(), object:is_readonly())
-- display: true false true

1.5 Customizing creation

During the creation process of objects, the metamethod __init(self) is invoked if it exists, with the newly
created object as its sole argument to let the parent finalize or customize its initialization before it is returned.
This mechanism is used by commands to run their :exec() method during their creation.

2 Inheritance

The object model allows to build tree-like inheritance hierarchy by creating objects from classes, themselves
created from other classes, and so on until the desired hierarchy is modeled. The example below shows an
excerpt of the taxonomy of the elements as implemented by the element module, with their corresponding
depth levels in comment:

local object in MAD -- depth level 1
local element = object {...} -- depth level 2

local drift_element = element {...} -- depth level 3
local instrument = drift_element {...} -- depth level 4

(continues on next page)

3. WRITING ATTRIBUTES 29

(continued from previous page)

local monitor = instrument {...} -- depth level 5
local hmonitor = monitor {...} -- depth level 6
local vmonitor = monitor {...} -- depth level 6

local thick_element = element {...} -- depth level 3
local tkicker = thick_element {...} -- depth level 4
local kicker = tkicker {...} -- depth level 5
local hkicker = kicker {...} -- depth level 6
local vicker = kicker {...} -- depth level 6

2.1 Reading attributes

Reading an attribute not defined in an object triggers a recursive dynamic lookup along the chain of its
parents until it is found or the root object is reached. Reading an object attribute defined as a function
automatically evaluates it with the object passed as the sole argument and the returned value is forwarded
to the reader as if it were the attribute’s value. When the argument is not used by the function, it becomes
a deferred expression that can be defined directly with the operator := as explained in section Deferred
expression. This feature allows to use attributes holding values and functions the same way and postpone
design decisions, e.g. switching from simple value to complex calculations without impacting the users side
with calling parentheses at every use.

The following example is similar to the second example of the section Deferred expression, and it must be
clear that fun must be explicitly called to retrieve the value despite that its definition is the same as the
attribute v2.

local var = 10
local fun = \-> var -- here := is invalid
local obj = object { v1 := var, v2 =\-> var, v3 = var }
print(obj.v1, obj.v2, obj.v3, fun()) -- display: 10 10 10 10
var = 20
print(obj.v1, obj.v2, obj.v3, fun()) -- display: 20 20 10 20

2.2 Writing attributes

Writing to an object uses direct access and does not involve any lookup. Hence setting an attribute with a
non-nil value in an object hides his definition inherited from the parents, while setting an attribute with nil
in an object restores the inheritance lookup:

local obj1 = object { a=1, b='hello' }
local obj2 = obj1 { a=\s-> s.b..' world' }
print(obj1.a, obj2.a) -- display: 1 hello world
obj2.a = nil
print(obj1.a, obj2.a) -- display: 1 1

3. EXAMPLES 30

This property is extensively used by commands to specify their attributes default values or to rely on other
commands attributes default values, both being overridable by the users.

It is forbidden to write to a read-only objects or to a read-only attributes. The former can be set using
the :readonly method, while the latter corresponds to attributes with names that start by __, i.e. two
underscores.

2.3 Class instances

To determine if an object is an instance of a given class, use the :is_instanceOf method:

local hmonitor, instrument, element in MAD.element
print(hmonitor:is_instanceOf(instrument)) -- display: true

To get the list of public attributes of an instance, use the :get_varkeys method:

for _,a in ipairs(hmonitor:get_varkeys()) do print(a) end
for _,a in ipairs(hmonitor:get_varkeys(object)) do print(a) end
for _,a in ipairs(hmonitor:get_varkeys(instrument)) do print(a) end
for _,a in ipairs(element:get_varkeys()) do print(a) end

The code snippet above lists the names of the attributes set by:

– the object hmonitor (only).
– the objects in the hierachy from hmonitor to object included.
– the objects in the hierachy from hmonitor to instrument included.
– the object element (only), the root of all elements.

2.4 Examples

Figure3.1: Object model and inheritance.

Fig. 3.1 summarizes inheritance and attributes lookup with arrows and colors, which are reproduced by the
example hereafter:

3. ATTRIBUTES 31

local element, quadrupole in MAD.element -- kind
local mq = quadrupole 'mq' { l = 2.1 } -- class
local qf = mq 'qf' { k1 = 0.05 } -- circuit
local qd = mq 'qd' { k1 = -0.06 } -- circuit
local qf1 = qf 'qf1' {} -- element
... -- more elements
print(qf1.k1) -- display: 0.05 (lookup)
qf.k1 = 0.06 -- update strength of 'qf' circuit
print(qf1.k1) -- display: 0.06 (lookup)
qf1.k1 = 0.07 -- set strength of 'qf1' element
print(qf.k1, qf1.k1) -- display: 0.06 0.07 (no lookup)
qf1.k1 = nil -- cancel strength of 'qf1' element
print(qf1.k1, qf1.l) -- display: 0.06 2.1 (lookup)
print(#element:get_varkeys()) -- display: 33 (may vary)

The element quadrupole provided by the element module is the father of the objects created on its left. The
black arrows show the user defined hierarchy of object created from and linked to the quadrupole. The
main quadrupole mq is a user class representing the physical element, e.g. defining a length, and used to
create two new classes, a focusing quadrupole qf and a defocusing quadrupole qd to model the circuits, e.g.
hold the strength of elements connected in series, and finally the real individual elements qf1, qd1, qf2 and
qd2 that will populate the sequence. A tracking command will request various attributes when crossing an
element, like its length or its strength, leading to lookup of different depths in the hierarchy along the red
arrow. A user may also write or overwrite an attribute at different level in the hierarchy by accessing directly
to an element, as shown by the purple arrows, and mask an attribute of the parent with the new definitions
in the children. The construction shown in this example follows the separation of concern principle and it is
still highly reconfigurable despite that is does not contain any deferred expression or lambda function.

3 Attributes

New attributes can be added to objects using the dot operator . or the indexing operator [] as for tables.
Attributes with non-string keys are considered as private. Attributes with string keys starting by two under-
scores are considered as private and read-only, and must be set during creation:

mq.comment = "Main Arc Quadrupole"
print(qf1.comment) -- displays: Main Arc Quadrupole
qf.__k1 = 0.01 -- error
qf2 = qf { __k1=0.01 } -- ok

The root object provides the following attributes:
name

A lambda returning the string __id.
parent

A lambda returning a reference to the parent object.

Warning: the following private and read-only attributes are present in all objects as part of the object model
and should never be used, set or changed; breaking this rule would lead to an undefined behavior:

3. METHODS 32

__id
A string holding the object’s name set during its creation.

__par
A reference holding the object’s parent set during its creation.

__flg
A number holding the object’s flags.

__var
A table holding the object’s variables, i.e. pairs of (key, value).

__env
A table holding the object’s environment.

__index
A reference to the object’s parent variables.

4 Methods

New methods can be added to objects but not classes, using the :set_methods(set) method with set
being the set of methods to add as in the following example:

sequence :set_methods {
name_of = name_of,
index_of = index_of,
range_of = range_of,
length_of = length_of,
...

}

where the keys are the names of the added methods and their values must be a callable accepting the object
itself, i.e. self, as their first argument. Classes cannot set new methods.

The root object provides the following methods:
is_final

A method () returning a boolean telling if the object is final, i.e. cannot have instance.
is_class

A method () returning a boolean telling if the object is a class, i.e. had/has an instance.
is_readonly

A method () returning a boolean telling if the object is read-only, i.e. attributes cannot be changed.
is_instanceOf

A method (cls) returning a boolean telling if self is an instance of cls.
set_final

A method ([a]) returning self set as final if a ~= false or non-final.
set_readonly

A method ([a]) returning self set as read-only if a ~= false or read-write.
same

A method ([name]) returning an empty clone of self and named after the string name (default: nil).

3. METHODS 33

copy
A method ([name]) returning a copy of self and named after the string name (default: nil). The
private attributes are not copied, e.g. the final, class or read-only qualifiers are not copied.

get_varkeys
A method ([cls]) returning both, the list of the non-private attributes of self down to cls (default:
self) included, and the set of their keys in the form of pairs (key, key).

get_variables
A method (lst, [set], [noeval]) returning a set containing the pairs (key, value) of the attributes
listed in lst. If set is provided, it will be used to store the pairs. If noveval == true, the functions
are not evaluated. The full list of attributes can be retrieved from get_varkeys. Shortcut getvar.

set_variables
A method (set, [override]) returning self with the attributes set to the pairs (key, value) con-
tained in set. If override ~= true, the read-only attributes (with key starting by "__") cannot be
updated.

copy_variables
A method (set, [lst], [override]) returning self with the attributes listed in lst set to the
pairs (key, value) contained in set. If lst is not provided, it is replaced by self.__attr. If set is an
object and lst.noeval exists, it is used as the list of attributes to copy without function evaluation.3 If
override ~= true, the read-only attributes (with key starting by "__") cannot be updated. Shortcut
cpyvar.

wrap_variables
A method (set, [override]) returning self with the attributes wrapped by the pairs (key, value)
contained in set, where the value must be a callable (a) that takes the attribute (as a callable) and
returns the wrapped value. If override ~= true, the read-only attributes (with key starting by "__")
cannot be updated.

The following example shows how to convert the length l of an RBEND from cord to arc,4 keeping its
strength k0 to be computed on the fly:

local cord2arc in MAD.gmath
local rbend in MAD.element
local printf in MAD.utility
local rb = rbend 'rb' { angle=pi/10, l=2, k0=\s s.angle/s.l }
printf("l=%.5f, k0=%.5f\n", rb.l, rb.k0) -- l=2.00000, k0=0.15708
rb:wrap_variables { l=\l\s cord2arc(l(),s.angle) } -- RBARC
printf("l=%.5f, k0=%.5f\n", rb.l, rb.k0) -- l=2.00825, k0=0.15643
rb.angle = pi/20 -- update angle
printf("l=%.5f, k0=%.5f\n", rb.l, rb.k0) -- l=2.00206, k0=0.07846

The method converts non-callable attributes into callables automatically to simplify the user-side, i.e. l()
can always be used as a callable whatever its original form was. At the end, k0 and l are computed values
and updating angle affects both as expected.
clear_variables

A method () returning self after setting all non-private attributes to nil.
3 This feature is used to setup a command from another command, e.g. track from twiss
4 This approach is safer than the volatile option RBARC of MAD-X.

3. METHODS 34

clear_array
A method () returning self after setting the array slots to nil, i.e. clear the list part.

clear_all
A method () returning self after clearing the object except its private attributes.

set_methods
A method (set, [override]) returning self with the methods set to the pairs (key, value) con-
tained in set, where key must be a string (the method’s name) and value must be a callable (the method
itself). If override ~= true, the read-only methods (with key starting by "__") cannot be updated.
Classes cannot update their methods.

set_metamethods
A method (set, [override]) returning self with the attributes set to the pairs (key, value) con-
tained in set, where key must be a string (the metamethod’s name) and value must be a callable(the
metamethod itself). If override == false, the metamethods cannot be updated. Classes cannot
update their metamethods.

insert
A method ([idx], a) returning self after inserting a at the position idx (default: #self+1) and
shifting up the items at positions idx...

remove
A method ([idx]) returning the value removed at the position idx (default: #self) and shifting
down the items at positions idx...

move
A method (idx1, idx2, idxto, [dst]) returning the destination object dst (default: self) after
moving the items from self at positions idx1..idx2 to dst at positions idxto... The destination
range can overlap with the source range.

sort
A method ([cmp]) returning self after sorting in-place its list part using the ordering callable
(cmp(ai, aj)) (default: "<"), which must define a partial order over the items. The sorting algorithm
is not stable.

bsearch
A method (a, [cmp], [low], [high]) returning the lowest index idx in the range specified by
low..high (default: 1..#self) from the ordered list of self that compares true with item a using
the callable (cmp(a, self[idx])) (default: "<=" for ascending, ">=" for descending), or high+1.
In the presence of multiple equal items, "<=" (resp. ">=") will return the index of the first equal item
while "<" (resp. ">") the index next to the last equal item for ascending (resp. descending) order.5

lsearch
A method (a, [cmp], [low], [high]) returning the lowest index idx in the range specified by
low..high (default: 1..#self) from the list of self that compares true with item a using the
callable (cmp(a, self[idx])) (default: "=="), or high+1. In the presence of multiple equal items
in an ordered list, "<=" (resp. ">=") will return the index of the first equal item while "<" (resp. ">")
the index next to the last equal item for ascending (resp. descending) order.Page 34, 5

get_flags
A method () returning the flags of self. The flags are not inherited nor copied.

set_flags
5 bsearch and lsearch stand for binary (ordered) search and linear (unordered) search respectively.

3. METHODS 35

A method (flgs) returning self after setting the flags determined by flgs.
clear_flags

A method (flgs) returning self after clearing the flags determined by flgs.
test_flags

A method (flgs) returning a boolean telling if all the flags determined by flgs are set.
open_env

A method ([ctx]) returning self after opening an environment, i.e. a global scope, using self as
the context for ctx (default: 1). The argument ctx must be either a function or a number defining a
call level ≥ 1.

close_env
A method () returning self after closing the environment linked to it. Closing an environment twice
is safe.

load_env
A method (loader) returning self after calling the loader, i.e. a compiled chunk, using self as its
environment. If the loader is a string, it is interpreted as the filename of a script to load, see functions
load and loadfile in Lua 5.2 §6.1 for details.

dump_env
A method () returning self after dumping its content on the terminal in the rought form of pairs (key,
value), including content of table and object value, useful for debugging environments.

is_open_env
A method () returning a boolean telling if self is an open environment.

raw_len
A method () returning the number of items in the list part of the object. This method should not be
confused with the native function rawlen.

raw_get
A method (key) returning the value of the attribute key without lambda evaluation nor inheritance
lookup. This method should not be confused with the native function rawget.

raw_set
A method (key, val) setting the attribute key to the value val, bypassing all guards of the object
model. This method should not be confused with the native function rawset. Warning: use this
dangerous method at your own risk!

var_get
A method (key) returning the value of the attribute key without lambda evaluation.

var_val
A method (key, val) returning the value val of the attribute key with lambda evaluation. This
method is the complementary of var_get, i.e. __index ≡ var_val ∘ var_get.

dumpobj
A method ([fname], [cls], [patt], [noeval]) return self after dumping its non-private at-
tributes in file fname (default: stdout) in a hierarchical form down to cls. If the string patt is
provided, it filters the names of the attributes to dump. If fname == '-', the dump is returned as a
string in place of self. The logical noeval prevents the evaluatation the deferred expressions and
reports the functions addresses instead. In the output, self and its parents are displayed indented
according to their inheritance level, and preceeded by a + sign. The attributes overridden through the
inheritance are tagged with 𝑛 * signs, where 𝑛 corresponds to the number of overrides since the first

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

3. METAMETHODS 36

definition.

5 Metamethods

New metamethods can be added to objects but not classes, using the :set_metamethods(set) method
with set being the set of metamethods to add as in the following example:

sequence :set_metamethods {
__len = len_mm,
__index = index_mm,
__newindex = newindex_mm,
...

}

where the keys are the names of the added metamethods and their values must be a callable accepting the
object itself, i.e. self, as their first argument. Classes cannot set new metamethods.

The root object provides the following metamethods:
__init

A metamethod () called to finalize self before returning from the constructor.
__same

A metamethod () similar to the method same.
__copy

A metamethod () similar to the method copy.
__len

A metamethod () called by the length operator # to return the size of the list part of self.
__call

A metamethod ([name], tbl) called by the call operator () to return an instance of self created
from name and tbl, i.e. using self as a constructor.

__index
A metamethod (key) called by the indexing operator [key] to return the value of an attribute determ-
ined by key after having performed lambda evaluation and inheritance lookup.

__newindex
A metamethod (key, val) called by the assignment operator [key]=val to create new attributes for
the pairs (key, value).

__pairs
A metamethod () called by the pairs function to return an iterator over the non-private attributes of
self.

__ipairs
A metamethod () called by the ipairs function to return an iterator over the list part of self.

__tostring
A metamethod () called by the tostring function to return a string describing succinctly self.

The following attributes are stored with metamethods in the metatable, but have different purposes:

3. ENVIRONMENTS 37

__obj
A unique private reference that characterizes objects.

__metatable
A reference to the metatable itself protecting against modifications.

6 Flags

The object model uses flags to qualify objects, like class-object, final-object and readonly-object. The dif-
ference with boolean attributes is that flags are not inherited nor copied. The flags of objects are managed
by the methods :get_flags, :set_flags, :clear_flags and :test_flags. Methods like :is_class,
:is_final and :is_readonly are roughly equivalent to call the method :test_flags with the corres-
ponding (private) flag as argument. Note that functions from the typeid module that check for types or
kinds, like is_object or is_beam, never rely on flags because types and kinds are not qualifers.

From the technical point of view, flags are encoded into a 32-bit integer and the object model uses the pro-
tected bits 29-31, hence bits 0-28 are free of use. Object flags can be used and extended by other modules
introducing their own flags, like the element module that relies on bits 0-4 and used by many commands.
In practice, the bit index does not need to be known and should not be used directly but through its name to
abstract its value.

7 Environments

The object model allows to transform an object into an environment; in other words, a global workspace for
a given context, i.e. scope. Objects-as-environments are managed by the methods open_env, close_env,
load_env, dump_env and is_open_env.

Things defined in this workspace will be stored in the object, and accessible from outside using the standard
ways to access object attributes:

local object in MAD
local one = 1
local obj = object { a:=one } -- obj with 'a' defined
-- local a = 1 -- see explication below

obj:open_env() -- open environment
b = 2 -- obj.b defined
c =\ -> a..":"..b -- obj.c defined
obj:close_env() -- close environment

print(obj.a, obj.b, obj.c) -- display: 1 2 1:2
one = 3
print(obj.a, obj.b, obj.c) -- display: 3 2 3:2
obj.a = 4
print(obj.a, obj.b, obj.c) -- display: 4 2 4:2

3. ENVIRONMENTS 38

Uncommenting the line local a = 1 would change the last displayed column to 1:2 for the three prints
because the lambda defined for obj.c would capture the local a as it would exist in its scope. As seen
hereabove, once the environment is closed, the object still holds the variables as attributes.

The MADX environment is an object that relies on this powerful feature to load MAD-X lattices, their settings
and their “business logic”, and provides functions, constants and elements to mimic the behavior of the global
workspace of MAD-X to some extend:

MADX:open_env()
mq_k1 = 0.01 -- mq.k1 is not a valid identifier!
MQ = QUADRUPOLE {l=1, k1:=MQ_K1} -- MADX environment is case insensitive
MADX:close_env() -- but not the attributes of objects!
local mq in MADX
print(mq.k1) -- display: 0.01
MADX.MQ_K1 = 0.02
print(mq.k1) -- display: 0.02

Note that MAD-X workspace is case insensitive and everything is “global” (no scope, namespaces), hence
the quadrupole element has to be directly available inside the MADX environment. Moreover, the MADX
object adds the method load to extend load_env and ease the conversion of MAD-X lattices. For more
details see MADX

39

Chapter 4. Beams

The beam object is the root object of beams that store information relative to particles and particle beams. It
also provides a simple interface to the particles and nuclei database.

The beam module extends the typeid module with the is_beam function, which returns true if its argument
is a beam object, false otherwise.

1 Attributes

The beam object provides the following attributes:
particle

A string specifying the name of the particle. (default: "positron").
mass

A number specifying the energy-mass of the particle [GeV]. (default: emass).
charge

A number specifying the charge of the particle in [q] unit of qelect.1 (default: 1).
spin

A number specifying the spin of the particle. (default: 0).
emrad

A lambda returning the electromagnetic radius of the particle [m],
emrad = kradGeV × charge2/mass where kradGeV = 10−9(4𝜋𝜀0)

−1𝑞.
aphot

A lambda returning the average number of photon emitted per bending unit,
aphot = kphtGeV × charge2 × betgam where kphtGeV = 5

2
√
3
kradGeV (ℏ𝑐)−1.

energy
A number specifying the particle energy [GeV]. (default: 1).

pc
A lambda returning the particle momentum times the speed of light [GeV],
pc = (energy2 −mass2)

1
2 .

beta
A lambda returning the particle relativistic 𝛽 = 𝑣

𝑐 ,
beta = (1− (mass/energy)2)

1
2 .

gamma
A lambda returning the particle Lorentz factor 𝛾 = (1− 𝛽2)−

1
2 ,

gamma = energy/mass.
betgam

A lambda returning the product 𝛽𝛾,
betgam = (gamma2 − 1)

1
2 .

1 The qelect value is defined in the Constants module.

4. ATTRIBUTES 40

pc2
A lambda returning pc2, avoiding the square root.

beta2
A lambda returning beta2, avoiding the square root.

betgam2
A lambda returning betgam2, avoiding the square root.

brho
A lambda returning the magnetic rigidity [T.m],
brho = GeV_c * pc/|charge| where GeV_c = 109/𝑐

ex
A number specifying the horizontal emittance 𝜖𝑥 [m]. (default: 1).

ey
A number specifying the vertical emittance 𝜖𝑦 [m]. (default: 1).

et
A number specifying the longitudinal emittance 𝜖𝑡 [m]. (default: 1e-3).

exn
A lambda returning the normalized horizontal emittance [m],
exn = ex * betgam.

eyn
A lambda returning the normalized vertical emittance [m],
eyn = ey * betgam.

etn
A lambda returning the normalized longitudinal emittance [m],
etn = et * betgam.

nbunch
A number specifying the number of particle bunches in the machine. (default: 0).

npart
A number specifying the number of particles per bunch. (default: 0).

sigt
A number specifying the bunch length in 𝑐𝜎𝑡. (default: 1).

sige
A number specifying the relative energy spread in 𝜎𝐸/𝐸 [GeV]. (default: 1e-3).

The beam object also implements a special protect-and-update mechanism for its attributes to ensure con-
sistency and precedence between the physical quantities stored internally:

– The following attributes are read-only, i.e. writing to them triggers an error:
mass, charge, spin, emrad, aphot

– The following attributes are read-write, i.e. hold values, with their accepted numerical ranges:
particle, energy > mass, ex > 0, ey > 0, et > 0, nbunch > 0, npart > 0, sigt > 0,
sige > 0.

– The following attributes are read-update, i.e. setting these attributes update the energy, with
their accepted numerical ranges:

pc > 0, 0.9 > beta > 0, gamma > 1, betgam > 0.1, brho > 0, pc2, beta2, betgam2.

4. PARTICLES DATABASE 41

– The following attributes are read-update, i.e. setting these attributes update the emittances ex,
ey, and et repectively, with their accepted numerical ranges:

exn > 0, eyn > 0, etn > 0.

2 Methods

The beam object provides the following methods:
new_particle

A method (particle, mass, charge, [spin]) creating new particles or nuclei and store them
in the particles database. The arguments specify in order the new particle’s name, energy-mass
[GeV], charge [q], and spin (default: 0). These arguments can also be grouped into a table with
same attribute names as the argument names and passed as the solely argument.

set_variables
A method (set) returning self with the attributes set to the pairs (key, value) contained in set. This
method overrides the original one to implement the special protect-and-update mechanism, but the
order of the updates is undefined. It also creates new particle on-the-fly if the mass and the charge
are defined, and then select it. Shortcut setvar.

showdb
A method ([file]) displaying the content of the particles database to file (default: io.stdout).

3 Metamethods

The beam object provides the following metamethods:
__init

A metamethod () returning self after having processed the attributes with the special protect-and-
update mechanism, where the order of the updates is undefined. It also creates new particle on-the-fly
if the mass and the charge are defined, and then select it.

__newindex
A metamethod (key, val) called by the assignment operator [key]=val to create new attributes for
the pairs (key, value) or to update the underlying physical quantity of the beam objects.

The following attribute is stored with metamethods in the metatable, but has different purpose:
__beam

A unique private reference that characterizes beams.

4 Particles database

The beam object manages the particles database, which is shared by all beam instances. The default
set of supported particles is:

electron, positron, proton, antiproton, neutron, antineutron, ion, muon, antimuon, deuteron, antideu-
teron, negmuon (=muon), posmuon (=antimuon).

New particles can be added to the database, either explicitly using the new_particle method, or by creating
or updating a beam object and specifying all the attributes of a particle, i.e. particle’s name, charge, mass,
and (optional) spin:

4. EXAMPLES 42

local beam in MAD
local nmass, pmass, mumass in MAD.constant

-- create a new particle
beam:new_particle{ particle='mymuon', mass=mumass, charge=-1, spin=1/2 }

-- create a new beam and a new nucleus
local pbbeam = beam { particle='pb208', mass=82*pmass+126*nmass, charge=82 }

The particles database can be displayed with the showdb method at any time from any beam:

beam:showdb() -- check that both, mymuon and pb208 are in the database.

5 Particle charges

The physics of MAD-NG is aware of particle charges. To enable the compatibility with codes like MAD-X
that ignores the particle charges, the global option nocharge can be used to control the behavior of created
beams as shown by the following example:

local beam, option in MAD
local beam1 = beam { particle="electron" } -- beam with negative charge
print(beam1.charge, option.nocharge) -- display: -1 false

option.nocharge = true -- disable particle charges
local beam2 = beam { particle="electron" } -- beam with negative charge
print(beam2.charge, option.nocharge) -- display: 1 true

-- beam1 was created before nocharge activation...
print(beam1.charge, option.nocharge) -- display: -1 true

This approach ensures consistency of beams behavior during their entire lifetime.2

6 Examples

The following code snippet creates the LHC lead beams made of bare nuclei 208Pb82+

local beam in MAD
local lhcb1, lhcb2 in MADX
local nmass, pmass, amass in MAD.constant
local pbmass = 82*pmass+126*nmass

-- attach a new beam with a new particle to lhcb1 and lhcb2.
(continues on next page)

2 The option rbarc in MAD-X is too volatile and does not ensure such consistency. . .

4. EXAMPLES 43

(continued from previous page)

lhc1.beam = beam 'Pb208' { particle='pb208', mass=pbmass, charge=82 }
lhc2.beam = lhc1.beam -- let sequences share the same beam...

-- print Pb208 nuclei energy-mass in GeV and unified atomic mass.
print(lhcb1.beam.mass, lhcb1.beam.mass/amass)

44

Chapter 5. Beta0 Blocks

The beta0 object is the root object of beta0 blocks that store information relative to the phase space at given
positions, e.g. initial conditions, Poincaré section.

The beta0 module extends the typeid module with the is_beta0 function, which returns true if its argu-
ment is a beta0 object, false otherwise.

1 Attributes

The beta0 object provides the following attributes:
particle

A string specifying the name of the particle. (default: "positron").

2 Methods

The beta0 object provides the following methods:
showdb

A method ([file]) displaying the content of the particles database to file (default: io.stdout).

3 Metamethods

The beta0 object provides the following metamethods:
__init

A metamethod () returning self after having processed the attributes with the special protect-and-
update mechanism, where the order of the updates is undefined. It also creates new particle on-the-fly
if the mass and the charge are defined, and then select it.

The following attribute is stored with metamethods in the metatable, but has different purpose:
__beta0

A unique private reference that characterizes beta0 blocks.

4 Examples

45

Chapter 6. Elements

The element object is the root object of all elements used to model particle accelerators, including sequences
and drifts. It provides most default values inherited by all elements.

The element module extends the typeid module with the is_element function, which returns true if its
argument is an element object, false otherwise.

1 Taxonomy

The classes defined by the element module are organized according to the kinds and the roles of their
instances. The classes defining the kinds are:
thin

The thin elements have zero-length and their physics does not depend on it, i.e. the attribute l is
discarded or forced to zero in the physics.

thick
The thick elements have a length and their physics depends on it. Elements like sbend, rbend,
quadrupole, solenoid, and elseparator trigger a runtime error if they have zero-length. Other
thick elements will accept to have zero-length for compatibility with MAD-X1 , but their physics will
have to be adjusted.2

drift
The drift elements have a length with a drift-like physics if 𝑙 ≥ minlen3 otherwise they are discarded
or ignored. Any space between elements with a length 𝑙 ≥ minlen are represented by an implicit
drift created on need by the 𝑠-iterator of sequences and discarded afterward.

patch
The patch elements have zero-length and the purpose of their physics is to change the reference frame.

extrn
The extern elements are never part of sequences. If they are present in a sequence definition, they are
expanded and replaced by their content, i.e. stay external to the lattice.

specl
The special elements have special roles like marking places (i.e. maker) or branching sequences (i.e.
slink).

These classes are not supposed to be used directly, except for extending the hierarchy defined by the element
module and schematically reproduced hereafter to help users understanding:

thin_element = element 'thin_element' { is_thin = true }
thick_element = element 'thick_element' { is_thick = true }
drift_element = element 'drift_element' { is_drift = true }
patch_element = element 'patch_element' { is_patch = true }
extrn_element = element 'extrn_element' { is_extern = true }

(continues on next page)

1 In MAD-X, zero-length sextupole and octupole are valid but may have surprising effects. . .
2 E.g. zero-length sextupole must define their strength with knl[3] instead of k2 to have the expected effect.
3 By default minlen = 10−12 m.

6. TAXONOMY 46

(continued from previous page)

specl_element = element 'specl_element' { is_special = true }

sequence = extrn_element 'sequence' { }
assembly = extrn_element 'assembly' { }
bline = extrn_element 'bline' { }

marker = specl_element 'marker' { }
slink = specl_element 'slink' { }

drift = drift_element 'drift' { }
collimator = drift_element 'collimator' { }
instrument = drift_element 'instrument' { }
placeholder = drift_element 'placeholder' { }

sbend = thick_element 'sbend' { }
rbend = thick_element 'rbend' { }
quadrupole = thick_element 'quadrupole' { }
sextupole = thick_element 'sextupole' { }
octupole = thick_element 'octupole' { }
decapole = thick_element 'decapole' { }
dodecapole = thick_element 'dodecapole' { }
solenoid = thick_element 'solenoid' { }
tkicker = thick_element 'tkicker' { }
wiggler = thick_element 'wiggler' { }
elseparator = thick_element 'elseparator' { }
rfcavity = thick_element 'rfcavity' { }
genmap = thick_element 'genmap' { }

beambeam = thin_element 'beambeam' { }
multipole = thin_element 'multipole' { }

xrotation = patch_element 'xrotation' { }
yrotation = patch_element 'yrotation' { }
srotation = patch_element 'srotation' { }
translate = patch_element 'translate' { }
changeref = patch_element 'changeref' { }
changedir = patch_element 'changedir' { }
changenrj = patch_element 'changenrj' { }

-- specializations
rfmultipole = rfcavity 'rfmultipole' { }
crabcavity = rfmultipole 'crabcavity' { }

monitor = instrument 'monitor' { }
hmonitor = monitor 'hmonitor' { }
vmonitor = monitor 'vmonitor' { }

(continues on next page)

6. ATTRIBUTES 47

(continued from previous page)

kicker = tkicker 'kicker' { }
hkicker = kicker 'hkicker' { }
vkicker = kicker 'vkicker' { }

All the classes above, including element, define the attributes kind = name and is_name = true where
name correspond to the class name. These attributes help to identify the kind and the role of an element as
shown in the following code excerpt:

local drift, hmonitor, sequence in MAD.element
local dft = drift {}
local bpm = hmonitor {}
local seq = sequence {}
print(dft.kind) -- display: drift
print(dft.is_drift) -- display: true
print(dft.is_drift_element) -- display: true
print(bpm.kind) -- display: hmonitor
print(bpm.is_hmonitor) -- display: true
print(bpm.is_monitor) -- display: true
print(bpm.is_instrument) -- display: true
print(bpm.is_drift_element) -- display: true
print(bpm.is_element) -- display: true
print(bpm.is_drift) -- display: true
print(bpm.is_thick_element) -- display: nil (not defined = false)
print(seq.kind) -- display: sequence
print(seq.is_element) -- display: true
print(seq.is_extrn_element) -- display: true
print(seq.is_thick_element) -- display: nil (not defined = false)

2 Attributes

The element object provides the following attributes:
l

A number specifying the physical length of the element on the design orbit [m]. (default: 0).
lrad

A number specifying the field length of the element on the design orbit considered by the radiation
[m]. (default: lrad = \s -> s.l).

angle
A number specifying the bending angle 𝛼 of the element [rad]. A positive angle represents a bend to
the right, i.e. a −𝑦-rotation towards negative x values. (default: 0).

tilt
A number specifying the physical tilt of the element [rad]. All the physical quantities defined by the
element are in the tilted frame, except misalign that comes first when tracking through an element,
see the track command for details. (default: 0).

6. ATTRIBUTES 48

model
A string specifying the integration model "DKD" or "TKT" to use when tracking through the element
and overriding the command attribute, see the track command for details. (default: cmd.model).

method
A number specifying the integration order 2, 4, 6, or 8 to use when tracking through the element and
overriding the command attribute, see the track command for details. (default: cmd.method).

nslice
A number specifying the number of slices or a list of increasing relative positions or a callable (elm,
mflw, lw) returning one of the two previous kind of positions specification to use when tracking
through the element and overriding the command attribute, see the survey or the track commands for
details. (default: cmd.nslice).

refpos
A string holding one of "entry", "centre" or "exit", or a number specifying a position in [m]
from the start of the element, all of them resulting in an offset to substract to the at attribute to find the
𝑠-position of the element entry when inserted in a sequence, see element positions for details. (default:
nil ≡ seq.refer).

aperture
A mappable specifying aperture attributes, see Aperture for details. (default: {kind='circle', 1}).

apertype
A string specifying the aperture type, see Aperture for details. (default: \s -> s.aperture.kind
or 'circle').4

misalign
A mappable specifying misalignment attributes, see Misalignment for details. (default: nil)

The thick_element object adds the following multipolar and fringe fields attributes:
knl, ksl

A list specifying respectively the multipolar and skew integrated strengths of the element [m−𝑖+1].
(default: {}).

dknl, dksl
A list specifying respectively the multipolar and skew integrated strengths errors of the element
[m−𝑖+1]. (default: {}).

e1, e2
A number specifying respectively the horizontal angle of the pole faces at entry and exit of the element
[rad]. A positive angle goes toward inside the element, see Fig. 6.1 and Fig. 6.2. (default: 0).

h1, h2
A number specifying respectively the horizontal curvature of the pole faces at entry and exit of the
element [m−1]. A positive curvature goes toward inside the element. (default: 0).

hgap
A number specifying half of the vertical gap at the center of the pole faces of the element [m]. (default:
0).

fint
A number specifying the fringe field integral at entrance of the element. (default: 0).

fintx
4 This attribute was introduced to ease the translation of MAD-X sequences and may disappear in some future.

6. METHODS 49

A number specifying the fringe field integral at exit of the element. (default: fint).
fringe

A number specifying the bitmask to activate fringe fields of the element, see Flags for details. (default:
0).

fringemax
A number specifying the maximum order for multipolar fringe fields of the element. (default: 2).

kill_ent_fringe
A logical specifying to kill the entry fringe fields of the element. (default: false).

kill_exi_fringe
A logical specifying to kill the entry fringe fields of the element. (default: false).

f1, f2
A number specifying quadrupolar fringe field first and second parameter of SAD. (default: 0).

3 Methods

The element object provides the following methods:
select

A method ([flg]) to select the element for the flags flg (default: selected).
deselect

A method ([flg]) to deselect the element for the flags flg (default: selected).
is_selected

A method ([flg]) to test the element for the flags flg (default: selected).
is_disabled

A method () to test if the element is disabled, which is equivalent to call the method
is_selected(disabled).

is_observed
A method () to test if the element is observed, which is equivalent to call the method
is_selected(observed).

is_implicit
A method () to test if the element is implicit, which is equivalent to call the method
is_selected(implicit).

The drift_element and thick_element objects provide the following extra methods, see sub-elements
for details about the sat attribute:
index_sat

A method (sat, [cmp]) returning the lowest index idx (starting from 1) of the first sub-element with
a relative position from the element entry that compares true with the number sat using the optional
callable cmp(sat, self[idx].sat) (default: "=="), or #self+1. In the presence of multiple equal
positions, "<=" (resp. ">=") will return the lowest index of the position while "<" (resp. ">") the
lowest index next to the position for ascending (resp. descending) order.

insert_sat
A method (elm, [cmp]) returning the element after inserting the sub-element elm at the index de-
termined by :index_sat(elm.sat, [cmp]) using the optional callable cmp (default: "<").

6. SBEND 50

replace_sat
A method (elm) returning the replaced sub-element found at the index determined by
:index_sat(elm.sat) by the new sub-element elm, or nil.

remove_sat
A method (sat) returning the removed sub-element found at the index determined by
:index_sat(sat), or nil.

4 Metamethods

The element object provides the following metamethods:
__len

A metamethod () overloading the length operator # to return the number of subelements in the list
part of the element.

__add
A metamethod (obj) overloading the binary operator + to build a bline object from the juxtaposition
of two elements.

__mul
A metamethod (n) overloading the binary operator * to build a bline object from the repetition of
an element n times, i.e. one of the two operands must be a number.

__unm
A metamethod (n) overloading the unary operator - to build a bline object from the turning of an
element, i.e. reflect the element.

__tostring
A metamethod () returning a string built from the element information, e.g. print(monitor 'bpm'
{}) display the string ":monitor: 'bpm' memory-address".

The operators overloading of elements allows to unify sequence and beamline definitions in a consistent and
simple way, noting that sequence and bline are (external) elements too.

The following attribute is stored with metamethods in the metatable, but has different purpose:
__elem

A unique private reference that characterizes elements.

6. RBEND 51

5 Elements

Some elements define new attributes or override the default values provided by the root object element.
The following subsections describe the elements supported by MAD-NG.

5.1 SBend

The sbend element is a sector bending magnet with a curved reference system as shown in Fig. 6.1, and
defines or overrides the following attributes:
k0

A number specifying the dipolar strength of the element [m−1]. (default: k0 = \s -> s.angle/s.
l).56

k0s
A number specifying the dipolar skew strength of the element [m−1]. (default: 0).

k1, k1s
A number specifying respectively the quadrupolar and skew strengths of the element [m−2]. (default:
0).

k2, k2s
A number specifying respectively the sextupolar and skew strengths of the element [m−3]. (default:
0).

fringe
Set to flag fringe.bend to activate the fringe fields by default, see Flags for details.

Figure6.1: Reference system for a sector bending magnet.

5 By default bending magnets are ideal bends, that is angle = k0*l
6 For compatibility with MAD-X.

6. QUADRUPOLE 52

5.2 RBend

The rbend element is a rectangular bending magnet with a straight reference system as shown in Fig. 6.2,
and defines or overrides the following attributes:
k0

A number specifying the dipolar strength of the element [m−1]. (default: k0 = \s -> s.angle/s.
l).Page 51, 5Page 51, 6

k0s
A number specifying the dipolar skew strength of the element [m−1]. (default: 0).

k1, k1s
A number specifying respectively the quadrupolar and skew strengths of the element [m−2]. (default:
0).

k2, k2s
A number specifying respectively the sextupolar and skew strengths of the element [m−3]. (default:
0).

fringe
Set to flag fringe.bend to activate the fringe fields by default, see Flags for details.

true_rbend
A logical specifying if this rbend element behaves like (false) a sbend element with parallel pole
faces, i.e. 𝑒1 = 𝑒2 = 𝛼/2 in Fig. 6.1 , or like (true) a rectangular bending magnet with a straight
reference system as shown in Fig. 6.2. (default: false).Page 51, 6

Figure6.2: Reference system for a rectangular bending magnet.

6. SOLENOID 53

5.3 Quadrupole

The quadrupole element is a straight focusing element and defines the following attributes:
k0, k0s

A number specifying respectively the dipolar and skew strengths of the element [m−1]. (default: 0).
k1, k1s

A number specifying respectively the quadrupolar and skew strengths of the element [m−2]. (default:
0).

k2, k2s
A number specifying respectively the sextupolar and skew strengths of the element [m−3]. (default:
0).

5.4 Sextupole

The sextupole element is a straight element and defines the following attributes:
k2, k2s

A number specifying respectively the sextupolar and skew strengths of the element [m−3]. (default:
0).

5.5 Octupole

The octupole element is a straight element and defines the following attributes:
k3, k3s

A number specifying respectively the octupolar and skew strengths of the element [m−4]. (default: 0).

5.6 Decapole

The decapole element is a straight element and defines the following attributes:
k4, k4s

A number specifying respectively the decapolar and skew strength of the element [m−5]. (default: 0).

5.7 Dodecapole

The dodecapole element is a straight element and defines the following attributes:
k5, k5s

A number specifying respectively the dodecapolar and skew strength of the element [m−6]. (default:
0).

6. MONITOR, HMONITOR, VMONITOR 54

5.8 Solenoid

The solenoid element defines the following attributes:
ks, ksi

A number specifying respectively the strength [rad/m] and the integrated strength [rad] of the element.
A positive value points toward positive 𝑠. (default: 0).

5.9 Multipole

The multipole element is a thin element and defines the following attributes:
knl, ksl

A list specifying respectively the multipolar and skew integrated strengths of the element [m−𝑖+1].
(default: {}).

dknl, dksl
A list specifying respectively the multipolar and skew integrated strengths errors of the element
[m−𝑖+1]. (default: {}).

5.10 TKicker

The tkicker element is the root object of kickers and defines or overrides the following attributes:
hkick

A number specifying the horizontal strength of the element [m−1]. By convention, a kicker with a
positive horizontal strength kicks in the direction of the reference orbit, e.g. hkick ≡ - knl[1].
(default: 0).

vkick
A number specifying the vertical strength of the element [m−1]. By convention, a kicker with a positive
vertical strength kicks toward the reference orbit, e.g. vkick ≡ ksl[1]. (default: 0).

method
Set to 2 if ptcmodel is not set to enforce pure momentum kick and avoid dipolar strength integration
that would introduce dispersion.

5.11 Kicker, HKicker, VKicker

The kicker element inheriting from the tkicker element, is the root object of kickers involved in the orbit
correction and defines the following attributes:
chkick, cvkick

A number specifying respectively the horizontal and vertical correction strength of the element set by
the correct command [m−1]. (default:).

The hkicker (horizontal kicker) and vkicker (vertical kicker) elements define the following attribute:
kick

A number specifying the strength of the element in its main direction [m−1]. (default:).

6. ELSEPARATOR 55

5.12 Monitor, HMonitor, VMonitor

The monitor element is the root object of monitors involved in the orbit correction and defines the following
attributes:
mredx, mredy

A number specifying respectively the readout 𝑥, 𝑦-offset error of the element [m]. The offset is added
to the beam position during orbit correction (after scaling). (default: 0).

mresx, mresy
A number specifying respectively the readout 𝑥, 𝑦-scaling error of the element. The scale factor
multiplies the beam position by 1+mres (before offset) during orbit correction.7 (default: 0).

The hmonitor (horizontal monitor) and vmonitor (vertical monitor) elements are specialisations inheriting
from the monitor element.

5.13 RFCavity

The rfcavity element defines the following attributes:
volt

A number specifying the peak RF voltage of the element [MV]. (default: 0).
freq

A number specifying a non-zero RF frequency of the element [MHz]. (default: 0).
lag

A number specifying the RF phase lag of the element in unit of 2𝜋. (default: 0).
harmon

A number specifying the harmonic number of the element if freq is zero. (default: 0).
n_bessel

A number specifying the transverse focussing effects order of the element. (default: 0).
totalpath

A logical specifying if the totalpath must be used in the element. (default: true).

5.14 RFMultipole

The rfmultipole element defines the following attributes:
pnl, psl

A list specifying respectively the multipolar and skew phases of the element [rad]. (default: {}).
dpnl, dpsl

A list specifying respectively the multipolar and skew phases errors of the element [rad]. (default: {}).
7 This definition comes from MAD-X default zeroed values such that undefined attribute gives a scale of 1.

6. SLINK 56

5.15 ElSeparator

The elseparator element defines the following attributes:
ex, ey

A number specifying respectively the electric field 𝑥, 𝑦-strength of the element [MV/m]. (default: 0).
exl, eyl

A number specifying respectively the integrated electric field 𝑥, 𝑦-strength of the element [MV]. (de-
fault: 0).

5.16 Wiggler

The wiggler element defines the following attributes: NYI, TBD

5.17 BeamBeam

The beambeam element defines the following attributes: NYI, TBD

5.18 GenMap

The genmap element defines the following attributes:8

damap
A damap used for thick integration.

update
A callable (elm, mflw, lw) invoked before each step of thick integration to update the damap.
(default: nil)

nslice
A number specifying the number of slices or a list of increasing relative positions or a callable (elm,
mflw, lw) returning one of the two previous kind of positions specification to use when tracking
through the element and overriding the command attribute, see the survey or the track commands for
details. (default: 1).

5.19 SLink

The slink element defines the following attributes:9

sequence
A sequence to switch to right after exiting the element. (default: nil)

range
A range specifying the span over the sequence to switch to, as expected by the sequence method
:siter. (default: nil).

8 This element is a generalization of the matrix element of MAD-X, to use with care!
9 This element allows to switch between sequences during tracking, kind of if-then-else for tracking.

6. CHANGENRJ 57

nturn
A number specifying the number of turn to track the sequence to switch to, as expected by the sequence
method :siter. (default: nil).

dir
A number specifying the 𝑠-direction of the tracking of the sequence to switch to, as expected by the
sequence method :siter. (default: nil).

update
A callable (elm, mflw) invoked before retrieving the other attributes when entering the element.
(default: nil)

5.20 Translate

The translate element is a patch element and defines the following attributes:
dx, dy, ds

A number specifying respectively 𝑥, 𝑦, 𝑠-translation of the reference frame [m]. (default: 0)

5.21 XRotation, YRotation, SRotation

The xrotation (rotation around 𝑥-axis), yrotation (rotation around 𝑦-axis) and srotation (rotation
around 𝑠-axis) elements are patches element and define the following attribute:
angle

A number specifying the rotation angle around the axis of the element [rad]. (default: 0).

5.22 ChangeRef

The changeref element is a patch element and defines the following attributes:
dx, dy, ds

A number specifying respectively 𝑥, 𝑦, 𝑠-translation of the reference frame [m]. (default: 0)
dtheta, dphi, dpsi

A number specifying respectively 𝑦, −𝑥, 𝑠-rotation of the reference frame applied in this order after
any translation [rad]. (default: 0)

5.23 ChangeDir

The changedir element is a patch element that reverses the direction of the sequence during the tracking.

6. FRINGE FIELDS 58

5.24 ChangeNrj

The changenrj element is a patch element and defines the following attributes:
dnrj

A number specifying the change by 𝛿𝐸 of the reference beam energy [GeV]. The momenta of the
particles or damaps belonging to the reference beam (i.e. not owning a beam) are updated, while other
particles or damaps owning their beam are ignored. (default: 0)

6 Flags

The elementmodule exposes the following object flags through MAD.element.flags to use in conjunction
with the methods select and deselect:10

none
All bits zero.

selected
Set if the element has been selected.

disabled
Set if the element has been disabled, e.g. for orbit correction.

observed
Set if the element has been selected for observation, e.g. for output to TFS table. The $end markers
are selected for observation by default, and commands with the observe attribute set to 0 discard this
flag and consider all elements as selected for observation.

implicit
Set if the element is implicit, like the temporary implicit drifts created on-the-fly by the sequence
𝑠-iterator with indexes at half integers. This flag is used by commands with the implicit attribute.

playout
Set if the element angle must be used by layout plot. This flag is useful to plot multiple sequence
layouts around interaction points, like lhcb1 and lhcb2 around IP1 and IP5.

7 Fringe fields

The element module exposes the following flags through MAD.element.flags.fringe to control the ele-
ments fringe fields through their attribute fringe, or to restrict the activated fringe fields with the commands
attribute fringe:11

none
All bits zero.

bend
Control the element fringe fields for bending fields.

mult
Control the element fringe fields for multipolar fields up to fringemax order.

10 Remember that flags are not inherited nor copied as they are qualifying the object itself.
11 Those flags are not object flags, but fringe fields flags.

6. APERTURE 59

rfcav
Control the element fringe fields for rfcavity fields.

qsad
Control the element fringe fields for multipolar fields with extra terms for quadrupolar fields for com-
patibility with SAD.

comb
Control the element fringe fields for combined bending and multipolar fields.

combqs
Control the element fringe fields for combined bending and multipolar fields with extra terms for
quadrupolar fields for compatibility with SAD.

The element thick_element provides a dozen of attributes to parametrize the aforementionned fringe fields.
Note that in some future, part of these attributes may be grouped into a mappable to ensure a better consist-
ency of their parametrization.

8 Sub-elements

An element can have thin or thick sub-elements stored in its list part, hence the length operator # returns
the number of them. The attribute sat of sub-elements, i.e. read sub-at, is interpreted as their relative
position from the entry of their enclosing main element, that is a fractional of its length. The positions
of the sub-elements can be made absolute by dividing their sat attribute by the length of their main ele-
ment using lambda expressions. The sub-elements are only considered and valid in the drift_element
and thick_element kinds that implement the methods :index_sat, :insert_sat, :remove_sat, and
:replace_sat to manage sub-elements from their sat attribute. The sequence method :install updates
the sat attribute of the elements installed as sub-elements if the logical elements.subelem of the packed
form is enabled, i.e. when the 𝑠-position determined by the at, from and refpos attributes falls inside a
non-zero length element already installed in the sequence that is not an implicit drift. The physics of thick
sub-elements will shield the physics of their enclosing main element along their length, unless they combine
their attributes with those of their main element using lambda expressions to select some combined function
physics.

9 Aperture

All the apertures are mappable defined by the following attributes in the tilted frame of an element, see the
track command for details:
kind

A string specifying the aperture shape. (no default).
tilt

A number specifying the tilt angle of the aperture [rad]. (default: 0).
xoff, yoff

A number specifying the transverse 𝑥, 𝑦-offset of the aperture [m]. (default: 0).
maper

A mappable specifying a smaller aperture12 than the polygon aperture to use before checking the
12 It is the responsibility of the user to ensure that maper defines a smaller aperture than the polygon aperture.

6. APERTURE 60

polygon itself to speed up the test. The attributes tilt, xoff and yoff are ignored and superseded
by the ones of the polygon aperture. (default: nil).

The supported aperture shapes are listed hereafter. The parameters defining the shapes are expected to be in
the list part of the apertures and defines the top-right sector shape, except for the polygon:
square

A square shape with one parameter defining the side half-length. It is the default aperture check with
limits set to 1.

rectangle
A rectangular shape with two parameters defining the 𝑥, 𝑦-half lengths (default: 1 [m]).

circle
A circular shape with one parameter defining the radius.

ellipse
A elliptical shape with two parameters defining the 𝑥, 𝑦-radii. (default: 1 [m]).

rectcircle
A rectangular shape intersected with a circular shape with three parameters defining the 𝑥, 𝑦-half
lengths and the radius. (default: 1 [m]).

rectellipse
A rectangular shape intersected with an elliptical shape with four parameters defining the 𝑥, 𝑦-half
lengths and the 𝑥, 𝑦-radii.

racetrack
A rectangular shape with corners rounded by an elliptical shape with four parameters defining the 𝑥,
𝑦-half lengths and the corners 𝑥, 𝑦-radii.

octagon
A rectangular shape with corners truncated by a triangular shape with four parameters defining the 𝑥,
𝑦-half lengths and the triangle 𝑥, 𝑦-side lengths. An octagon can model hexagon or diamond shapes
by equating the triangle lengths to the rectangle half-lengths.

polygon
A polygonal shape defined by two vectors vx and vy holding the vertices coordinates. The polygon
does not need to be convex, simple or closed, but in the latter case it will be closed automatically by
joining the first and the last vertices.

bbox
A 6D bounding box with six parameters defining the upper limits of the absolute values of the six
coordinates.

The following example defines new classes with three different aperture definitions:

local quadrupole in MAD.element
local mq = quadrupole 'mq' { l=1, -- new class

aperture = { kind='racetrack',
tilt=pi/2, xoff=1e-3, yoff=5e-4, -- attributes
0.06,0.06,0.01,0.01 } -- parameters

}
local mqdiam = quadrupole 'mqdiam' { l=1, -- new class
aperture = { kind='octagon', xoff=1e-3, yoff=1e-3, -- attributes

(continues on next page)

6. MISALIGNMENT 61

(continued from previous page)

0.06,0.04,0.06,0.04 } -- parameters
}
local mqpoly = quadrupole 'mqpoly' { l=1, -- new class
aperture = { kind='polygon', tilt=pi/2, xoff=1e-3, yoff=1e-3, -- attributes

vx=vector{0.05, ...}, vy=vector{0, ...}, -- parameters
aper={kind='circle', 0.05} -- 2nd aperture

}

10 Misalignment

The misalignments are mappable defined at the entry of an element by the following attributes, see the track
command for details:
dx, dy, ds

A number specifying the 𝑥, 𝑦, 𝑠-displacement at the element entry [m], see Fig. 6.3 and Fig. 6.4 .
(default: 0).

dtheta
A number specifying the 𝑦-rotation angle (azimuthal) at the element entry [rad], see Fig. 6.3. (default:
0).

dphi
A number specifying the −𝑥-rotation angle (elevation) at the entry of the element [rad], see Fig. 6.5 .
(default: 0).

dpsi
A number specifying the 𝑠-rotation angle (roll) at the element entry [rad], see Fig. 6.5 . (default: 0).

Two kinds of misalignments are available for an element and summed beforehand:

– The absolute misalignments of the element versus its local reference frame, and specified by its
misalign attribute. These misalignments are always considered.

– The relative misalignments of the element versus a given sequence, and specified by the method
:misalign of sequence. These misalignments can be considered or not depending of command
settings.

Figure6.3: Displacements in the (𝑥, 𝑠) plane.

6. MISALIGNMENT 62

Figure6.4: Displacements in the (𝑦, 𝑠) plane.

Figure6.5: Displacements in the (𝑥, 𝑦) plane.

63

Chapter 7. Sequences

The MAD Sequences are objects convenient to describe accelerators lattices built from a list of elements
with increasing s-positions. The sequences are also containers that provide fast access to their elements by
referring to their indexes, s-positions, or (mangled) names, or by running iterators constrained with ranges
and predicates. The sequence object is the root object of sequences that store information relative to lattices.

The sequence module extends the typeid module with the is_sequence function, which returns true if
its argument is a sequence object, false otherwise.

1 Attributes

The sequence object provides the following attributes:
l

A number specifying the length of the sequence [m]. A nil will be replaced by the computed lattice
length. A value greater or equal to the computed lattice length will be used to place the $end marker.
Other values will raise an error. (default: nil).

dir
A number holding one of 1 (forward) or -1 (backward) and specifying the direction of the sequence.1
(default:~ 1)

refer
A string holding one of "entry", "centre" or "exit" to specify the default reference position in the
elements to use for their placement. An element can override it with its refpos attribute, see element
positions for details. (default: nil ≡ "centre").

minlen
A number specifying the minimal length [m] when checking for negative drifts or when generating
implicit drifts between elements in 𝑠-iterators returned by the method :siter. This attribute is auto-
matically set to 10−6 m when a sequence is created within the MADX environment. (default: 10−6)

beam
An attached beam. (default: nil)

Warning: the following private and read-only attributes are present in all sequences and should never be
used, set or changed; breaking this rule would lead to an undefined behavior:
__dat

A table containing all the private data of sequences.
__cycle

A reference to the element registered with the :cycle method. (default: nil)
1 This is equivalent to the MAD-X bv flag.

7. METHODS 64

2 Methods

The sequence object provides the following methods:
elem

A method (idx) returning the element stored at the positive index idx in the sequence, or nil.
spos

A method (idx) returning the 𝑠-position at the entry of the element stored at the positive index idx
in the sequence, or nil.

upos
A method (idx) returning the 𝑠-position at the user-defined refpos offset of the element stored at
the positive index idx in the sequence, or nil.

ds
A method (idx) returning the length of the element stored at the positive index idx in the sequence,
or nil.

align
A method (idx) returning a set specifying the misalignment of the element stored at the positive index
idx in the sequence, or nil.

index
A method (idx) returning a positive index, or nil. If idx is negative, it is reflected versus the size
of the sequence, e.g. -1 becomes #self, the index of the $end marker.

name_of
A method (idx, [ref]) returning a string corresponding to the (mangled) name of the element at
the index idx or nil. An element name appearing more than once in the sequence will be mangled
with an absolute count, e.g. mq[3], or a relative count versus the optional reference element ref
determined by :index_of, e.g. mq{-2}.

index_of
A method (a, [ref], [dir]) returning a number corresponding to the positive index of the element
determined by the first argument or nil. If a is a number (or a string representing a number), it
is interpreted as the 𝑠-position of an element and returned as a second number. If a is a string, it
is interpreted as the (mangled) name of an element as returned by :name_of. Finally, a can be a
reference to an element to search for. The argument ref (default: nil) specifies the reference element
determined by :index_of(ref) to use for relative 𝑠-positions, for decoding mangled names with
relative counts, or as the element to start searching from. The argument dir (default: 1) specifies the
direction of the search with values 1 (forward), -1 (backward), or 0 (no direction). The dir=0 case
may return an index at half-integer if a is interpreted as an 𝑠-position pointing to an implicit drift.

range_of
A method ([rng], [ref], [dir]) returning three numbers corresponding to the positive indexes
start and end of the range and its direction dir, or nil for an empty range. If rng is omitted, it returns
1, #self, 1, or #self, 1, -1 if dir is negative. If rng is a number or a string with no '/' separator,
it is interpreted as both start and end and determined by index_of. If rng is a string containing the
separator '/', it is split in two strings interpreted as start and end, both determined by :index_of.
If rng is a list, it will be interpreted as {start, end, [ref], [dir]}, both determined by :index_of,
unless ref equals 'idx' then both are determined by :index (i.e. a number is interpreted as an index
instead of a 𝑠-position). The arguments ref (default: nil) and dir (default: 1) are forwarded to all
invocations of :index_of with a higher precedence than ones in the list rng, and a runtime error

7. METHODS 65

is raised if the method returns nil, i.e. to disambiguate between a valid empty range and an invalid
range.

length_of
A method ([rng], [ntrn], [dir]) returning a number specifying the length of the range op-
tionally including ntrn extra turns (default: 0), and calculated from the indexes returned by
:range_of([rng], nil, [dir]).

iter
A method ([rng], [ntrn], [dir]) returning an iterator over the sequence elements. The optional
range is determined by :range_of(rng, [dir]), optionally including ntrn turns (default: 0). The
optional direction dir specifies the forward 1 or the backward -1 direction of the iterator. If rng is not
provided and the mtable is cycled, the start and end indexes are determined by :index_of(self.
__cycle). When used with a generic for loop, the iterator returns at each element: its index, the
element itself, its 𝑠-position over the running loop and its signed length depending on the direction.

siter
A method ([rng], [ntrn], [dir]) returning an 𝑠-iterator over the sequence elements. The op-
tional range is determined by :range_of([rng], nil, [dir]), optionally including ntrn turns
(default: 0). The optional direction dir specifies the forward 1 or the backward -1 direction of the
iterator. When used with a generic for loop, the iterator returns at each iteration: its index, the element
itself or an implicit drift, its 𝑠-position over the running loop and its signed length depending on the
direction. Each implicit drift is built on-the-fly by the iterator with a length equal to the gap between
the elements surrounding it and a half-integer index equal to the average of their indexes. The length
of implicit drifts is bounded by the maximum between the sequence attribute minlen and the minlen
from the constant module.

foreach
A method (act, [rng], [sel], [not]) returning the sequence itself after applying the action act
on the selected elements. If act is a set representing the arguments in the packed form, the missing
arguments will be extracted from the attributes action, range, select and default. The action
act must be a callable (elm, idx, [midx]) applied to an element passed as first argument and its
index as second argument, the optional third argument being the index of the main element in case elm
is a sub-element. The optional range is used to generate the loop iterator :iter([rng]). The optional
selector sel is a callable (elm, idx, [midx]) predicate selecting eligible elements for the action
using the same arguments. The selector sel can be specified in other ways, see element selections for
details. The optional logical not (default: false) indicates how to interpret default selection, as all
or none, depending on the semantic of the action.2

select
A method ([flg], [rng], [sel], [not]) returning the sequence itself after applying the action
:select([flg]) to the elements using :foreach(act, [rng], [sel], [not]). By default se-
quence have all their elements deselected with only the $end marker observed.

deselect
A method ([flg], [rng], [sel], [not]) returning the sequence itself after applying the action
:deselect([flg]) to the elements using :foreach(act, [rng], [sel], [not]). By default
sequence have all their elements deselected with only the $end marker observed.

filter
A method ([rng], [sel], [not]) returning a list containing the positive indexes of the elements

2 For example, the :remove method needs not=true to not remove all elements if no selector is provided.

7. METHODS 66

determined by :foreach(filt_act, [rng], [sel], [not]), and its size. The logical sel.
subelem specifies to select sub-elements too, and the list may contain non-integer indexes encoding
their main element index added to their relative position, i.e. midx.sat. The builtin function math.
modf(num) allows to retrieve easily the main element midx and the sub-element sat, e.g. midx,sat
= math.modf(val).

install
A method (elm, [rng], [sel], [cmp]) returning the sequence itself after installing the elements
in the list elm at their element positions; unless from="selected" is defined meaning multiple in-
stallations at positions relative to each element determined by the method :filter([rng], [sel],
true). The logical sel.subelem is ignored. If the arguments are passed in the packed form, the extra
attribute elements will be used as a replacement for the argument elm. The logical elm.subelem
specifies to install elements with 𝑠-position falling inside sequence elements as sub-elements, and set
their sat attribute accordingly. The optional callable cmp(elmspos, spos[idx]) (default: "<")
is used to search for the 𝑠-position of the installation, where equal 𝑠-position are installed after (i.e.
before with "<="), see bsearch from the miscellaneous module for details. The implicit drifts are
checked after each element installation.

replace
A method (elm, [rng], [sel]) returning the list of replaced elements by the elements in the list
elm placed at their element positions, and the list of their respective indexes, both determined by
:filter([rng], [sel], true). The list elm cannot contain instances of sequence or bline
elements and will be recycled as many times as needed to replace all selected elements. If the argu-
ments are passed in the packed form, the extra attribute elements will be used as a replacement for
the argument elm. The logical sel.subelem specifies to replace selected sub-elements too and set
their sat attribute to the same value. The implicit drifts are checked only once all elements have been
replaced.

remove
A method ([rng], [sel]) returning the list of removed elements and the list of their respective
indexes, both determined by :filter([rng], [sel], true). The logical sel.subelem specifies
to remove selected sub-elements too.

move
A method ([rng], [sel]) returning the sequence itself after updating the element positions at the
indexes determined by :filter([rng], [sel], true). The logical sel.subelem is ignored. The
elements must keep their order in the sequence and surrounding implicit drifts are checked only once
all elements have been moved.3

update
A method () returning the sequence itself after recomputing the positions of all elements.

misalign
A method (algn, [rng], [sel]) returning the sequence itself after setting the element misalign-
ments from algn at the indexes determined by :filter([rng], [sel], true). If algn is a map-
pable, it will be used to misalign the filtered elements. If algn is a iterable, it will be accessed using
the filtered elements indexes to retrieve their specific misalignment. If algn is a callable (idx), it
will be invoked for each filtered element with their index as solely argument to retrieve their specific
misalignment.

reflect
3 Updating directly the positions attributes of an element has no effect.

7. METAMETHODS 67

A method ([name]) returning a new sequence from the sequence reversed, and named from the op-
tional string name (default: self.name..'_rev').

cycle
A method (a) returning the sequence itself after checking that a is a valid reference using
:index_of(a), and storing it in the __cycle attribute, itself erased by the methods editing the se-
quence like :install, :replace, :remove, :share, and :unique.

share
A method (seq2) returning the list of elements removed from the seq2 and the list of their respective
indexes, and replaced by the elements from the sequence with the same name when they are unique in
both sequences.

unique
A method ([fmt]) returning the sequence itself after replacing all non-unique elements by new in-
stances sharing the same parents. The optional fmtmust be a callable (name, cnt, idx) that returns
the mangled name of the new instance build from the element name, its count cnt and its index idx
in the sequence. If the optional fmt is a string, the mangling callable is built by binding fmt as first
argument to the function string.format from the standard library, see Lua 5.2 §6.4 for details.

publish
A method (env, [keep]) returning the sequence after publishing all its elements in the environment
env. If the logical keep is true, the method will preserve existing elements from being overridden.
This method is automatically invoked with keep=true when sequences are created within the MADX
environment.

copy
A method ([name], [owner]) returning a new sequence from a copy of self, with the optional
name and the optional attribute owner set. If the sequence is a view, so will be the copy unless owner
== true.

set_readonly
Set the sequence as read-only, including its columns.

save_flags
A method ([flgs]) saving the flags of all the elements to the optional iterable flgs (default: {})
and return it.

restore_flags
A method (flgs) restoring the flags of all the elements from the iterable flgs. The indexes of the
flags must match the indexes of the elements in the sequence.

dumpseq
A method ([fil], [info]) displaying on the optional file fil (default: io.stdout) information
related to the position and length of the elements. Useful to identify negative drifts and badly po-
sitioned elements. The optional argument info indicates to display extra information like elements
misalignments.

check_sequ
A method () checking the integrity of the sequence and its dictionary, for debugging purpose only.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

7. SEQUENCES CREATION 68

3 Metamethods

The sequence object provides the following metamethods:
__len

A metamethod () called by the length operator # to return the size of the sequence, i.e. the number of
elements stored including the "$start" and "$end" markers.

__index
A metamethod (key) called by the indexing operator [key] to return the value of an attribute determ-
ined by key. The key is interpreted differently depending on its type with the following precedence:

1. A number is interpreted as an element index and returns the element or nil.
2. Other key types are interpreted as object attributes subject to object model lookup.
3. If the value associated with key is nil, then key is interpreted as an element name and returns

either the element or an iterable on the elements with the same name.4

4. Otherwise returns nil.
__newindex

A metamethod (key, val) called by the assignment operator [key]=val to create new attributes
for the pairs (key, value). If key is a number specifying the index or a string specifying the name
of an existing element, the following error is raised: "invalid sequence write access (use
replace method)"

__init
A metamethod () called by the constructor to compute the elements positions.5

__copy
A metamethod () similar to the :copy method.

The following attribute is stored with metamethods in the metatable, but has different purpose:

__sequ A unique private reference that characterizes sequences.

4 Sequences creation

During its creation as an object, a sequence can defined its attributes as any object, and the list of its ele-
ments that must form a sequence of increasing 𝑠-positions. When subsequences are part of this list, they
are replaced by their respective elements as a sequence element cannot be present inside other sequences. If
the length of the sequence is not provided, it will be computed and set automatically. During their creation,
sequences compute the 𝑠-positions of their elements as described in the section element positions, and check
for overlapping elements that would raise a “negative drift” runtime error.

The following example shows how to create a sequence form a list of elements and subsequences:

local sequence, drift, marker in MAD.element
local df, mk = drift 'df' {l=1}, marker 'mk' {}
local seq = sequence 'seq' {

(continues on next page)

4 An iterable supports the length operator #, the indexing operator [] and generic for loops with ipairs.
5 MAD-NG does not have a MAD-X like "USE" command to finalize this computation.

7. ELEMENT POSITIONS 69

(continued from previous page)

df 'df1' {}, mk 'mk1' {},
sequence {

sequence { mk 'mk0' {} },
df 'df.s' {}, mk 'mk.s' {}

},
df 'df2' {}, mk 'mk2' {},
} :dumpseq()

Displays:

sequence: seq, l=3
idx kind name l dl spos upos uds
001 marker start 0.000 0 0.000 0.000 0.000
002 drift df1 1.000 0 0.000 0.500 0.500
003 marker mk1 0.000 0 1.000 1.000 0.000
004 marker mk0 0.000 0 1.000 1.000 0.000
005 drift df.s 1.000 0 1.000 1.500 0.500
006 marker mk.s 0.000 0 2.000 2.000 0.000
007 drift df2 1.000 0 2.000 2.500 0.500
008 marker mk2 0.000 0 3.000 3.000 0.000
009 marker end 0.000 0 3.000 3.000 0.000

5 Element positions

A sequence looks at the following attributes of an element, including sub-sequences, when installing it, and
only at that time, to determine its position:
at

A number holding the position in [m] of the element in the sequence relative to the position specified
by the from attribute.

from
A string holding one of "start", "prev", "next", "end" or "selected", or the (mangled) name
of another element to use as the reference position, or a number holding a position in [m] from the
start of the sequence. (default: "start" if at≥ 0, "end" if at< 0, and "prev" otherwise)

refpos
A string holding one of "entry", "centre" or "exit", or the (mangled) name of a sequence sub-
element to use as the reference position, or a number specifying a position [m] from the start of the
element, all of them resulting in an offset to substract to the at attribute to find the 𝑠-position of the
element entry. (default: nil ≡ self.refer).

shared
A logical specifying if an element is used at different positions in the same sequence definition, i.e.
shared multiple times, through temporary instances to store the many at and from attributes needed
to specify its positions. Once built, the sequence will drop these temporary instances in favor of their
common parent, i.e. the original shared element.

Warning:

7. INDEXES, NAMES AND COUNTS 70

The at and from attributes are not considered as intrinsic properties of the elements and are used only
once during installation. Any reuse of these attributes is the responsibility of the user, including the
consistency between at and from after updates.

6 Element selections

The element selection in sequence use predicates in combination with iterators. The sequence iterator man-
ages the range of elements where to apply the selection, while the predicate says if an element in this range
is illegible for the selection. In order to ease the use of methods based on the :foreach method, the selector
predicate sel can be built from different types of information provided in a set with the following attributes:
flag

A number interpreted as a flags mask to pass to the element method :is_selected. It should not be
confused with the flags passed as argument to methods :select and :deselect, as both flags can be
used together but with different meanings!

pattern
A string interpreted as a pattern to match the element name using string.match from the standard
library, see Lua 5.2 §6.4 for details.

class
An element interpreted as a class to pass to the element method :is_instansceOf.

list
An iterable interpreted as a list used to build a set and select the elements by their name, i.e. the built
predicate will use tbl[elm.name] as a logical. If the iterable is a single item, e.g. a string, it will be
converted first to a list.

table
A mappable interpreted as a set used to select the elements by their name, i.e. the built predicate will
use tbl[elm.name] as a logical. If the mappable contains a list or is a single item, it will be converted
first to a list and its set part will be discarded.

select
A callable interpreted as the selector itself, which allows to build any kind of predicate or to complete
the restrictions already built above.

subelem
A boolean indicating to include or not the sub-elements in the scanning loop. The predicate and the
action receive the sub-element and its sub-index as first and second argument, and the main element
index as third argument.

All these attributes are used in the aforementioned order to incrementally build predicates that are combined
with logical conjunctions, i.e. and’ed, to give the final predicate used by the :foreach method. If only one
of these attributes is needed, it is possible to pass it directly in sel, not as an attribute in a set, and its type
will be used to determine the kind of predicate to build. For example, self:foreach(act, monitor) is
equivalent to self:foreach{action=act, class=monitor}.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

7. ITERATORS AND RANGES 71

7 Indexes, names and counts

Indexing a sequence triggers a complex look up mechanism where the arguments will be interpreted in
various ways as described in the :__index metamethod. A number will be interpreted as a relative slot
index in the list of elements, and a negative index will be considered as relative to the end of the sequence,
i.e. -1 is the $end marker. Non-number will be interpreted first as an object key (can be anything), looking
for sequence methods or attributes; then as an element name if nothing was found.

If an element exists but its name is not unique in the sequence, an iterable is returned. An iterable supports
the length # operator to retrieve the number of elements with the same name, the indexing operator []waiting
for a count 𝑛 to retrieve the 𝑛-th element from the start with that name, and the iterator ipairs to use with
generic for loops.

The returned iterable is in practice a proxy, i.e. a fake intermediate object that emulates the expected behavior,
and any attempt to access the proxy in another manner should raise a runtime error.

Warning: The indexing operator [] interprets a number as a (relative) element index as the method :index,
while the method :index_of interprets a number as a (relative) element 𝑠-position [m].

The following example shows how to access to the elements through indexing and the iterable::

local sequence, drift, marker in MAD.element
local seq = sequence {
drift 'df' { id=1 }, marker 'mk' { id=2 },
drift 'df' { id=3 }, marker 'mk' { id=4 },
drift 'df' { id=5 }, marker 'mk' { id=6 },
}
print(seq[1].name) -- display: $start (start marker)
print(seq[-1].name) -- display: $end (end marker)

print(#seq.df, seq.df[3].id) -- display: 3 5
for _,e in ipairs(seq.df) do io.write(e.id," ") end -- display: 1 3 5
for _,e in ipairs(seq.mk) do io.write(e.id," ") end -- display: 2 4 6

-- print name of drift with id=3 in absolute and relative to id=6.
print(seq:name_of(4)) -- display: df[2] (2nd df from start)
print(seq:name_of(2, -2)) -- display: df{-3} (3rd df before last mk)

The last two lines of code display the name of the same element but mangled with absolute and relative
counts.

7. ITERATORS AND RANGES 72

8 Iterators and ranges

Ranging a sequence triggers a complex look up mechanism where the arguments will be interpreted in various
ways as described in the :range_of method, itself based on the methods :index_of and :index. The
number of elements selected by a sequence range can be computed by the :length_of method, which
accepts an extra number of turns to consider in the calculation.

The sequence iterators are created by the methods :iter and :siter, and both are based on the :range_of
method as mentioned in their descriptions and includes an extra number of turns as for the method
:length_of, and a direction 1 (forward) or -1 (backward) for the iteration. The :siter differs from the
:iter by its loop, which returns not only the sequence elements but also implicit drifts built on-the-fly when
a gap > 10−10 m is detected between two sequence elements. Such implicit drift have half-integer indexes
and make the iterator “continuous” in 𝑠-positions.

The method :foreach uses the iterator returned by :iter with a range as its sole argument to loop over
the elements where to apply the predicate before executing the action. The methods :select, :deselect,
:filter, :install, :replace, :remove, :move, and :misalign are all based directly or indirectly on
the :foreach method. Hence, to iterate backward over a sequence range, these methods have to use either
its list form or a numerical range. For example the invocation seq:foreach(\e -> print(e.name),
{2, 2, 'idx', -1) will iterate backward over the entire sequence seq excluding the $start and $end
markers, while the invocation seq:foreach(\e -> print(e.name), 5..2..-1) will iterate backward
over the elements with 𝑠-positions sitting in the interval [2, 5] m.

The tracking commands survey and track use the iterator returned by :siter for their main loop, with
their range, nturn and dir attributes as arguments. These commands also save the iterator states in their
mflw to allow the users to run them nstep by nstep, see commands survey and track for details.

The following example shows how to access to the elements with the :foreach method::

local sequence, drift, marker in MAD.element
local observed in MAD.element.flags
local seq = sequence {
drift 'df' { id=1 }, marker 'mk' { id=2 },
drift 'df' { id=3 }, marker 'mk' { id=4 },
drift 'df' { id=5 }, marker 'mk' { id=6 },
}

local act = \e -> print(e.name,e.id)
seq:foreach(act, "df[2]/mk[3]")
-- display:
df 3
mk 4
df 5
mk 6

seq:foreach{action=act, range="df[2]/mk[3]", class=marker}
-- display: markers at ids 4 and 6
seq:foreach{action=act, pattern="^[^$]"}
-- display: all elements except $start and $end markers

(continues on next page)

7. FODO CELL 73

(continued from previous page)

seq:foreach{action=\e -> e:select(observed), pattern="mk"}
-- same as: seq:select(observed, {pattern="mk"})

local act = \e -> print(e.name, e.id, e:is_observed())
seq:foreach{action=act, range="#s/#e"}
-- display:
$start nil false
df 1 false
mk 2 true
df 3 false
mk 4 true
df 5 false
mk 6 true
$end nil true

9 Examples

9.1 FODO cell

The following example shows how to build a very simple FODO cell and an arc made of 10 FODO cells.

local sequence, sbend, quadrupole, sextupole, hkicker, vkicker, marker in MAD.
→˓element
local mkf = marker 'mkf' {}
local ang=2*math.pi/80
local fodo = sequence 'fodo' { refer='entry',
mkf { at=0, shared=true }, -- mark the start of the fodo
quadrupole 'qf' { at=0, l=1 , k1=0.3 },
sextupole 'sf' { l=0.3, k2=0 },
hkicker 'hk' { l=0.2, kick=0 },
sbend 'mb' { at=2, l=2 , angle=ang },

quadrupole 'qd' { at=5, l=1 , k1=-0.3 },
sextupole 'sd' { l=0.3, k2=0 },
vkicker 'vk' { l=0.2, kick=0 },
sbend 'mb' { at=7, l=2 , angle=ang },
}
local arc = sequence 'arc' { refer='entry', 10*fodo }
fodo:dumpseq() ; print(fodo.mkf, mkf)

Display:

sequence: fodo, l=9
idx kind name l dl spos upos uds

(continues on next page)

7. INSTALLING ELEMENTS I 74

(continued from previous page)

001 marker $start 0.000 0 0.000 0.000 0.000
002 marker mkf 0.000 0 0.000 0.000 0.000
003 quadrupole qf 1.000 0 0.000 0.000 0.000
004 sextupole sf 0.300 0 1.000 1.000 0.000
005 hkicker hk 0.200 0 1.300 1.300 0.000
006 sbend mb 2.000 0 2.000 2.000 0.000
007 quadrupole qd 1.000 0 5.000 5.000 0.000
008 sextupole sd 0.300 0 6.000 6.000 0.000
009 vkicker vk 0.200 0 6.300 6.300 0.000
010 sbend mb 2.000 0 7.000 7.000 0.000
011 marker $end 0.000 0 9.000 9.000 0.000
marker : 'mkf' 0x01015310e8 marker: 'mkf' 0x01015310e8 -- same marker

9.2 SPS compact description

The following dummy example shows a compact definition of the SPS mixing elements, beam lines and
sequence definitions. The elements are zero-length, so the lattice is too.

local drift, sbend, quadrupole, bline, sequence in MAD.element

-- elements (empty!)
local ds = drift 'ds' {}
local dl = drift 'dl' {}
local dm = drift 'dm' {}
local b1 = sbend 'b1' {}
local b2 = sbend 'b2' {}
local qf = quadrupole 'qf' {}
local qd = quadrupole 'qd' {}

-- subsequences
local pf = bline 'pf' {qf,2*b1,2*b2,ds} -- #: 6
local pd = bline 'pd' {qd,2*b2,2*b1,ds} -- #: 6
local p24 = bline 'p24' {qf,dm,2*b2,ds,pd} -- #: 11 (5+6)
local p42 = bline 'p42' {pf,qd,2*b2,dm,ds} -- #: 11 (6+5)
local p00 = bline 'p00' {qf,dl,qd,dl} -- #: 4
local p44 = bline 'p44' {pf,pd} -- #: 12 (6+6)
local insert = bline 'insert' {p24,2*p00,p42} -- #: 30 (11+2*4+11)
local super = bline 'super' {7*p44,insert,7*p44} -- #: 198 (7*12+30+7*12)

-- final sequence
local SPS = sequence 'SPS' {6*super} -- # = 1188 (6*198)

-- check number of elements and length
print(#SPS, SPS.l) -- display: 1190 0 (no element length provided)

7. INSTALLING ELEMENTS II 75

9.3 Installing elements I

The following example shows how to install elements and subsequences in an empty initial sequence:

local sequence, drift in MAD.element
local seq = sequence "seq" { l=16, refer="entry", owner=true }
local sseq1 = sequence "sseq1" {
at=5, l=6 , refpos="centre", refer="entry",
drift "df1'" {l=1, at=-4, from="end"},
drift "df2'" {l=1, at=-2, from="end"},
drift "df3'" { at= 5 },
}
local sseq2 = sequence "sseq2" {
at=14, l=6, refpos="exit", refer="entry",
drift "df1''" { l=1, at=-4, from="end"},
drift "df2''" { l=1, at=-2, from="end"},
drift "df3''" { at= 5 },
}
seq:install {
drift "df1" {l=1, at=1},
sseq1, sseq2,
drift "df2" {l=1, at=15},
} :dumpseq()

Display:

sequence: seq, l=16
idx kind name l dl spos upos uds
001 marker $start* 0.000 0 0.000 0.000 0.000
002 drift df1 1.000 0 1.000 1.000 0.000
003 drift df1' 1.000 0 4.000 4.000 0.000
004 drift df2' 1.000 0 6.000 6.000 0.000
005 drift df3' 0.000 0 7.000 7.000 0.000
006 drift df1'' 1.000 0 10.000 10.000 0.000
007 drift df2'' 1.000 0 12.000 12.000 0.000
008 drift df3'' 0.000 0 13.000 13.000 0.000
009 drift df2 1.000 0 15.000 15.000 0.000
010 marker $end 0.000 0 16.000 16.000 0.000

7. INSTALLING ELEMENTS II 76

9.4 Installing elements II

The following more complex example shows how to install elements and subsequences in a sequence using
a selection and the packed form for arguments:

local mk = marker "mk" { }
local seq = sequence "seq" { l = 10, refer="entry",
mk "mk1" { at = 2 },
mk "mk2" { at = 4 },
mk "mk3" { at = 8 },
}
local sseq = sequence "sseq" { l = 3 , at = 5, refer="entry",
drift "df1'" { l = 1, at = 0 },
drift "df2'" { l = 1, at = 1 },
drift "df3'" { l = 1, at = 2 },
}
seq:install {
class = mk,
elements = {

drift "df1" { l = 0.1, at = 0.1, from="selected" },
drift "df2" { l = 0.1, at = 0.2, from="selected" },
drift "df3" { l = 0.1, at = 0.3, from="selected" },
sseq,
drift "df4" { l = 1, at = 9 },

}
}

seq:dumpseq()

sequence: seq, l=10
idx kind name l dl spos upos uds
001 marker $start 0.000 0 0.000 0.000 0.000
002 marker mk1 0.000 0 2.000 2.000 0.000
003 drift df1 0.100 0 2.100 2.100 0.000
004 drift df2 0.100 0 2.200 2.200 0.000
005 drift df3 0.100 0 2.300 2.300 0.000
006 marker mk2 0.000 0 4.000 4.000 0.000
007 drift df1 0.100 0 4.100 4.100 0.000
008 drift df2 0.100 0 4.200 4.200 0.000
009 drift df3 0.100 0 4.300 4.300 0.000
010 drift df1' 1.000 0 5.000 5.000 0.000
011 drift df2' 1.000 0 6.000 6.000 0.000
012 drift df3' 1.000 0 7.000 7.000 0.000
013 marker mk3 0.000 0 8.000 8.000 0.000
014 drift df1 0.100 0 8.100 8.100 0.000
015 drift df2 0.100 0 8.200 8.200 0.000
016 drift df3 0.100 0 8.300 8.300 0.000

(continues on next page)

7. INSTALLING ELEMENTS II 77

(continued from previous page)

017 drift df4 1.000 0 9.000 9.000 0.000
018 marker $end 0.000 0 10.000 10.000 0.000

78

Chapter 8. MTables

The MAD Tables (MTables) — also named Table File System (TFS) — are objects convenient to store, read
and write a large amount of heterogeneous information organized as columns and header. The MTables are
also containers that provide fast access to their rows, columns, and cells by referring to their indexes, or some
values of the designated reference column, or by running iterators constrained with ranges and predicates.

The mtable object is the root object of the TFS tables that store information relative to tables.

The mtable module extends the typeid module with the is_mtable function, which returns true if its
argument is a mtable object, false otherwise.

1 Attributes

The mtable object provides the following attributes:
type

A string specifying the type of the mtable (often) set to the name of the command that created it, like
survey, track or twiss. (default: 'user').

title
A string specifying the title of the mtable (often) set to the attribute title of the command that created
it. (default: 'no-title').

origin
A string specifying the origin of the mtable. (default: "MAD version os arch").

date
A string specifying the date of creation of the mtable. (default: "day/month/year").

time
A string specifying the time of creation of the mtable. (default: "hour:min:sec").

refcol
A string specifying the name of the reference column used to build the dictionary of the mtable, and
to mangle values with counts. (default: nil).

header
A list specifying the augmented attributes names (and their order) used by default for the header when
writing the mtable to files. Augmented meaning that the list is concatenated to the list held by the
parent mtable during initialization. (default: {'name', 'type', 'title', 'origin', 'date',
'time', 'refcol'}).

column
A list specifying the augmented columns names (and their order) used by default for the columns
when writing the mtable to files. Augmented meaning that the list is concatenated to the list held by
the parent mtable during initialization. (default: nil).

novector
A logical specifying to not convert (novector == true) columns containing only numbers to vectors
during the insertion of the second row. The attribute can also be a list specifying the columns names
to remove from the specialization. If the list is empty or novector ~= true, all numeric columns

8. METHODS 79

will be converted to vectors, and support all methods and operations from the linear algebra module.
(default: nil).

owner
A logical specifying if an empty mtable is a view with no data (owner ~= true), or a mtable holding
data (owner == true). (default: nil).

reserve
A number specifying an estimate of the maximum number of rows stored in the mtable. If the value
is underestimated, the mtable will still expand on need. (default: 8).

Warning: the following private and read-only attributes are present in all mtables and should never be used,
set or changed; breaking this rule would lead to an undefined behavior:
__dat

A table containing all the private data of mtables.
__seq

A sequence attached to the mtable by the survey and track commands and used by the methods
receiving a reference to an element as argument. (default: nil).

__cycle
A reference to the row registered with the :cycle method. (default: nil).

2 Methods

The mtable object provides the following methods:
nrow

A method () returning the number of rows in the mtable.
ncol

A method () returning the number of columns in the mtable.
ngen

A method () returning the number of columns generators in the mtable. The number of columns with
data is given by :ncol() - :ngen().

colname
A method (idx) returning the string name of the idx-th column in the mtable or nil.

colnames
A method ([lst]) returning the list lst (default: {}) filled with all the columns names of the mtable.

index
A method (idx) returning a positive index, or nil. If idx is negative, it is reflected versus the size
of the mtable, e.g. -1 becomes #self, the index of the last row.

name_of
A method (idx, [ref]) returning a string corresponding to the (mangled) value from the reference
column of the row at the index idx, or nil. A row value appearing more than once in the reference
column will be mangled with an absolute count, e.g. mq[3], or a relative count versus the reference
row determined by :index_of(ref), e.g. mq{-2}.

index_of
A method (a, [ref], [dir]) returning a number corresponding to the positive index of the row

8. METHODS 80

determined by the first argument or nil. If a is a number (or a string representing a number), it is
interpreted as the index of the row and returned as a second number. If a is a string, it is interpreted
as the (mangled) value of the row in the reference column as returned by :name_of. Finally, a can
be a reference to an element to search for if the mtable has both, an attached sequence, and a column
named 'eidx' mapping the indexes of the elements to the attached sequence.1 The argument ref
(default: nil) specifies the reference row determined by :index_of(ref) to use for relative indexes,
for decoding mangled values with relative counts, or as the reference row to start searching from. The
argument dir (default: 1) specifies the direction of the search with values 1 (forward), -1 (backward),
or 0 (no direction), which correspond respectively to the rounding methods ceil, floor and round
from the lua math module.

range_of
A method ([rng], [ref], [dir]) returning three numbers corresponding to the positive indexes
start and end of the range and its direction dir (default: 1), or nil for an empty range. If rng is
omitted, it returns 1, #self, 1, or #self, 1, -1 if dir is negative. If rng is a number or a string with
no '/' separator, it is interpreted as start and end, both determined by :index_of. If rng is a string
containing the separator '/', it is split in two strings interpreted as start and end, both determined by
:index_of. If rng is a list, it will be interpreted as { start, end, [ref], [dir] }, both determined
by :index_of. The arguments ref and dir are forwarded to all invocations of :index_of with a
higher precedence than ones in the list rng, and a runtime error is raised if the method returns nil,
i.e. to disambiguate between a valid empty range and an invalid range.

length_of
A method ([rng], [ntrn], [dir]) returning a number specifying the length of the range op-
tionally including ntrn extra turns (default: 0), and calculated from the indexes returned by
:range_of([rng], nil, [dir]).

get
A method (row, col, [cnt]) returning the value stored in the mtable at the cell (row,col), or
nil. If row is a not a row index determined by :index(row), it is interpreted as a (mangled) value to
search in the reference column, taking into account the count cnt (default: 1). If col is not a column
index, it is interpreted as a column name.

set
A method (row, col, val, [cnt]) returning the mtable itself after updating the cell (row,col)
to the value val, or raising an error if the cell does not exist. If row is a not a row index determined
by :index(row), it is interpreted as a (mangled) value to search in the reference column, taking into
account the count cnt (default: 1). If col is not a column index, it is interpreted as a column name.

getcol
A method (col) returning the column col, or nil. If col is not a column index, it is interpreted as
a column name.

setcol
A method (col, val) returning the mtable itself after updating the column col with the values of
val, or raising an error if the column does not exist. If col is not a column index, it is interpreted as
a column name. If the column is a generator, so must be val or an error will be raised. If the column
is not a generator and val is a callable (ri), it will be invoked with the row index ri as its sole
argument, using its returned value to update the column cell. Otherwise val must be an iterable or
an error will be raised. If the column is already a specialized vector, the iterable must provide enough

1 These information are usually provided by the command creating the mtable, like survey and track.

8. METHODS 81

numbers to fill it entirely as nil is not a valid value.
inscol

A method ([ref], col, val, [nvec]) returning the mtable itself after inserting the column data
val with the string name col at index ref (default: :ncol()+1). If ref is not a column index, it
is interpreted as a column name. If val is a callable (ri), it will be added as a column generator.
Otherwise val must be an iterable or an error will be raised. The iterable will used to fill the new
column that will be specialized to a vector if its first value is a number and nvec ~= true (default:
nil).

addcol
A method (col, val, [nvec]) equivalent to :inscol(nil, col, val, [nvec]).

remcol
A method (col) returning the mtable itself after removing the column col, or raising an error if the
column does not exist. If col is not a column index, it is interpreted as a column name.

rencol
A method (col, new) returning the mtable itself after renaming the column col to the string new, or
raising an error if the column does not exist. If col is not a column index, it is interpreted as a column
name.

getrow
A method (row, [ref]) returning the mappable (proxy) of the row determined by the method
:index_of(row, [ref]), or nil.

setrow
A method (row, val, [ref]) returning the mtable itself after updating the row at index determined
by :index_of(row, [ref]) using the values provided by the mappable val, which can be a list
iterated as pairs of (index, value) or a set iterated as pairs of (key, value) with key being the column
names, or a combination of the two. An error is raised if the column does not exist.

insrow
A method (row, val, [ref]) returning the mtable itself after inserting a new row at index determ-
ined by :index_of(row, [ref]) and filled with the values provided by the mappable val, which
can be a list iterated as pairs of (index, value) or a set iterated as pairs of (key, value) with key being
the column names or a combination of the two.

addrow
A method (val) equivalent to :insrow(#self+1, val).

remrow
A method (row, [ref]) returning the mtable itself after removing the row determined by the method
:index_of(row, [ref]), or raising an error if the row does not exist.

swprow
A method (row1, row2, [ref1], [ref2]) returning the mtable itself after swapping the content
of the rows, both determined by the method :index_of(row, [ref]), or raising an error if one of
the row does not exist.

clrrow
A method (row, [ref]) returning the mtable itself after clearing the row determined by the method
:index_of(row, [ref]), or raising an error if the row does not exist; where clearing the row means
to set vector value to 0 and nil otherwise.

clear

8. METHODS 82

A method () returning the mtable itself after clearing all the rows, i.e. #self == 0, with an oppor-
tunity for new columns specialization.

iter
A method ([rng], [ntrn], [dir]) returning an iterator over the mtable rows. The optional range
is determined by :range_of([rng], [dir]), optionally including ntrn turns (default: 0). The
optional direction dir specifies the forward 1 or the backward -1 direction of the iterator. If rng is
not provided and the mtable is cycled, the start and end indexes are determined by :index_of(self.
__cycle). When used with a generic for loop, the iterator returns at each rows the index and the row
mappable (proxy).

foreach
A method (act, [rng], [sel], [not]) returning the mtable itself after applying the action act
on the selected rows. If act is a set representing the arguments in the packed form, the missing
arguments will be extracted from the attributes action, range, select and default. The action
act must be a callable (row, idx) applied to a row passed as first argument and its index as second
argument. The optional range is used to generate the loop iterator :iter([rng]). The optional
selector sel is a callable (row, idx) predicate selecting eligible rows for the action from the row
itself passed as first argument and its index as second argument. The selector sel can be specified in
other ways, see row selections for details. The optional logical not (default: false) indicates how to
interpret default selection, as all or none, depending on the semantic of the action.2

select
A method ([rng], [sel], [not]) returning the mtable itself after selecting the rows using
:foreach(sel_act, [rng], [sel], [not]). By default mtable have all their rows deselected,
the selection being stored as boolean in the column at index 0 and named is_selected.

deselect
A method ([rng], [sel], [not]) returning the mtable itself after deselecting the rows using
:foreach(desel_act, [rng], [sel], [not]). By default mtable have all their rows deselected,
the selection being stored as boolean in the column at index 0 and named is_selected.

filter
A method ([rng], [sel], [not]) returning a list containing the positive indexes of the rows de-
termined by :foreach(filt_act, [rng], [sel], [not]), and its size.

insert
A method (row, [rng], [sel]) returning the mtable itself after inserting the rows in the list row
at the indexes determined by :filter([rng], [sel], true). If the arguments are passed in the
packed form, the extra attribute rows will be used as a replacement for the argument row, and if
the attribute where="after" is defined then the rows will be inserted after the selected indexes. The
insertion scheme depends on the number𝑅 of rows in the list row versus the number 𝑆 of rows selected
by :filter; 1× 1 (one row inserted at one index), 𝑅× 1 (𝑅 rows inserted at one index), 1× 𝑆 (one
row inserted at 𝑆 indexes) and 𝑅 × 𝑆 (𝑅 rows inserted at 𝑆 indexes). Hence, the insertion schemes
insert respectively 1, 𝑅, 𝑆, and min(𝑅,𝑆) rows.

remove
A method ([rng], [sel]) returning the mtable itself after removing the rows determined by
:filter([rng], [sel], true).

sort
A method (cmp, [rng], [sel]) returning the mtable itself after sorting the rows at the indexes

2 For example, the :remove method needs not=true to not remove all rows if no selector is provided.

8. METHODS 83

determined by :filter([rng], [sel], true) using the ordering callable cmp(row1, row2).
The arguments row1 and row2 are mappable (proxies) referring to the current rows being compared
and providing access to the columns values for the comparison.3 The argument cmp can be specified
in a compact ordering form as a string that will be converted to an ordering callable by the function
str2cmp from the utility module. For example, the string “-y,x” will be converted by the method to
the following lambda \r1,r2 -> r1.y > r2.y or r1.y == r2.y and r1.x < r2.x, where y
and x are the columns used to sort the mtable in descending (-) and ascending (+) order respectively.
The compact ordering form is not limited in the number of columns and avoids making mistakes in
the comparison logic when many columns are involved.

cycle
A method (a) returning the mtable itself after checking that a is a valid reference using
:index_of(a), and storing it in the __cycle attribute, itself erased by the methods editing the mtable
like :insert, :remove or :sort.

copy
A method ([name], [owner]) returning a new mtable from a copy of self, with the optional name
and the optional attribute owner set. If the mtable is a view, so will be the copy unless owner ==
true.

is_view
A method () returning true if the mtable is a view over another mtable data, false otherwise.

set_readonly
Set the mtable as read-only, including the columns and the rows proxies.

read
A method ([filname]) returning a new instance of self filled with the data read from the file
determined by openfile(filename, 'r', {'.tfs','.txt','.dat'}) from the utility module.
This method can read columns containing the data types nil, boolean, number, complex number, (nu-
merical) range, and (quoted) string. The header can also contain tables saved as string and decoded
with function str2tbl from the utility module.

write
A method ([filname], [clst], [hlst], [rsel]) returning the mtable itself after writing its
content to the file determined by openfile(filename, 'w', {'.tfs', '.txt', '.dat'})
from the utility module. The columns to write and their order is determined by clst or self.column
(default: nil ≡ all columns). The attributes to write in the header and their order is determined
by hlst or self.header. The logical rsel indicates to save all rows or only rows selected by the
:select method (rsel == true). This method can write columns containing the data types nil,
boolean, number, complex number, (numerical) range, and (quoted) string. The header can also con-
tain tables saved as string and encoded with function tbl2str from the utility module.

print
A method ([clst], [hlst], [rsel]) equivalent to :write(nil, [clst], [hlst],
[rsel]).

save_sel
A method ([sel]) saving the rows selection to the optional iterable sel (default: {}) and return it.

restore_sel
A method (sel) restoring the rows selection from the iterable sel. The indexes of sel must match

3 A mappable supports the length operator #, the indexing operator [], and generic for loops with pairs.

8. METAMETHODS 84

the indexes of the rows in the mtable.
make_dict

A method ([col]) returning the mtable itself after building the rows dictionnary from the values of
the reference column determined by col (default: refcol) for fast row access. If col is not a column
index, it is interpreted as a column name except for the special name 'none' that disables the rows
dictionnary and reset refcol to nil.

check_mtbl
A method () checking the integrity of the mtable and its dictionary (if any), for debugging purpose
only.

3 Metamethods

The mtable object provides the following metamethods:
__len

A metamethod () called by the length operator # to return the number of rows in the mtable.
__add

A metamethod (val) called by the plus operator + returning the mtable itself after appending the row
val at its end, similiar to the :addrow method.

__index
A metamethod (key) called by the indexing operator [key] to return the value of an attribute determ-
ined by key. The key is interpreted differently depending on its type with the following precedence:

1. A number is interpreted as a row index and returns an iterable on the row (proxy) or nil.
2. Other key types are interpreted as object attributes subject to object model lookup.
3. If the value associated with key is nil, then key is interpreted as a column name and returns the

column if it exists, otherwise. . .
4. If key is not a column name, then key is interpreted as a value in the reference column and returns

either an iterable on the row (proxy) determined by this value or an iterable on the rows (proxies)
holding this non-unique value.4

5. Otherwise returns nil.
__newindex

A metamethod (key, val) called by the assignment operator [key]=val to create new attributes
for the pairs (key, value). If key is a number or a value specifying a row in the reference column or a
string specifying a column name, the following error is raised:

"invalid mtable write access (use 'set' methods)"

__init
A metamethod () called by the constructor to build the mtable from the column names stored in its
list part and some attributes, like owner, reserve and novector.

__copy
A metamethod () similar to the method copy.

The following attribute is stored with metamethods in the metatable, but has different purpose:
4 An iterable supports the length operator #, the indexing operator [], and generic for loops with ipairs.

8. ROWS SELECTIONS 85

__mtbl
A unique private reference that characterizes mtables.

4 MTables creation

During its creation as an object, an mtable can defined its attributes as any object, and the list of its column
names, which will be cleared after its initialization. Any column name in the list that is enclosed by braces
is designated as the refererence column for the dictionnary that provides fast row indexing, and the attribute
refcol is set accordingly.

Some attributes are considered during the creation by the metamethod __init, like owner, reserve and
novector, and some others are initialized with defined values like type, title, origin, date, time, and
refcol. The attributes header and column are concatenated with the the parent ones to build incrementing
list of attributes names and columns names used by default when writing the mtable to files, and these lists
are not provided as arguments.

The following example shows how to create a mtable form a list of column names add rows:

local mtable in MAD
local tbl = mtable 'mytable' {

{'name'}, 'x', 'y' } -- column 'name' is the refcol
+ { 'p11', 1.1, 1.2 }
+ { 'p12', 2.1, 2.2 }
+ { 'p13', 2.1, 3.2 }
+ { 'p11', 3.1, 4.2 }

print(tbl.name, tbl.refcol, tbl:getcol'name')
-- display: mytable name mtable reference column: 0x010154cd10

Pitfall: When a column is named 'name', it must be explicitly accessed, e.g. with the :getcol method, as
the indexing operator [] gives the precedence to object’s attributes and methods. Hence, tbl.name returns
the table name 'mytable', not the column 'name'.

5 Rows selections

The row selection in mtable use predicates in combination with iterators. The mtable iterator manages the
range of rows where to apply the selection, while the predicate says if a row in this range is illegible for the
selection. In order to ease the use of methods based on the :foreach method, the selector predicate sel
can be built from different types of information provided in a set with the following attributes:
selected

A boolean compared to the rows selection stored in column 'is_selected'.
pattern

A string interpreted as a pattern to match the string in the reference column, which must exist, using
string.match from the standard library, see Lua 5.2 §6.4 for details. If the reference column does
not exist, it can be built using the make_dict method.

http://github.com/MethodicalAcceleratorDesign/MADdocs/blob/master/lua52-refman-madng.pdf

8. INDEXES, NAMES AND COUNTS 86

list
An iterable interpreted as a list used to build a set and select the rows by their name, i.e. the built
predicate will use tbl[row.name] as a logical, meaning that column name must exists. An alternate
column name can be provided through the key colname, i.e. used as tbl[row[colname]]. If the
iterable is a single item, e.g. a string, it will be converted first to a list.

table
A mappable interpreted as a set used to select the rows by their name, i.e. the built predicate will use
tbl[row.name] as a logical, meaning that column name must exists. If the mappable contains a list
or is a single item, it will be converted first to a list and its set part will be discarded.

kind
An iterable interpreted as a list used to build a set and select the rows by their kind, i.e. the built
predicate will use tbl[row.kind] as a logical, meaning that column kind must exists. If the iterable
is a single item, e.g. a string, it will be converted first to a list. This case is equivalent to list with
colname='kind'.

select
A callable interpreted as the selector itself, which allows to build any kind of predicate or to complete
the restrictions already built above.

All these attributes are used in the aforementioned order to incrementally build predicates that are combined
with logical conjunctions, i.e. and’ed, to give the final predicate used by the :foreach method. If only
one of these attributes is needed, it is possible to pass it directly in sel, not as an attribute in a set, and its
type will be used to determine the kind of predicate to build. For example, tbl:foreach(act, "^MB") is
equivalent to tbl:foreach{action=act, pattern="^MB"}.

6 Indexes, names and counts

Indexing a mtable triggers a complex look up mechanism where the arguments will be interpreted in various
ways as described in the metamethod __index. A number will be interpreted as a relative row index in the
list of rows, and a negative index will be considered as relative to the end of the mtable, i.e. -1 is the last
row. Non-number will be interpreted first as an object key (can be anything), looking for mtable methods or
attributes; then as a column name or as a row value in the reference column if nothing was found.

If a row exists but its value is not unique in the reference column, an iterable is returned. An iterable supports
the length # operator to retrieve the number of rows with the same value, the indexing operator [] waiting for
a count 𝑛 to retrieve the 𝑛-th row from the start with that value, and the iterator ipairs to use with generic
for loops.

The returned iterable is in practice a proxy, i.e. a fake intermediate object that emulates the expected behavior,
and any attempt to access the proxy in another manner should raise a runtime error.

Note: Compared to the sequence, the indexing operator [] and the method :index_of of the mtable always
interprets a number as a (relative) row index. To find a row from a 𝑠-position [m] in the mtable if the column
exists, use the functions lsearch or bsearch (if they are monotonic) from the utility module.

The following example shows how to access to the rows through indexing and the iterable:

8. ITERATORS AND RANGES 87

local mtable in MAD
local tbl = mtable { {'name'}, 'x', 'y' } -- column 'name' is the refcol

+ { 'p11', 1.1, 1.2 }
+ { 'p12', 2.1, 2.2 }
+ { 'p13', 2.1, 3.2 }
+ { 'p11', 3.1, 4.2 }

print(tbl[1].y) -- display: 1.2
print(tbl[-1].y) -- display: 4.2

print(#tbl.p11, tbl.p12.y, tbl.p11[2].y) -- display: 2 2.2 4.2
for _,r in ipairs(tbl.p11) do io.write(r.x," ") end -- display: 1.1 3.1
for _,v in ipairs(tbl.p12) do io.write(v, " ") end -- display: 'p12' 2.1 2.2

-- print name of point with name p11 in absolute and relative to p13.
print(tbl:name_of(4)) -- display: p11[2] (2nd p11 from start)
print(tbl:name_of(1, -2)) -- display: p11{-1} (1st p11 before p13)

The last two lines of code display the name of the same row but mangled with absolute and relative counts.

7 Iterators and ranges

Ranging a mtable triggers a complex look up mechanism where the arguments will be interpreted in various
ways as described in the method :range_of, itself based on the methods :index_of and :index. The
number of rows selected by a mtable range can be computed by the :length_of method, which accepts an
extra number of turns to consider in the calculation.

The mtable iterators are created by the method :iter, based on the method :range_of as mentioned in its
description and includes an extra number of turns as for the method :length_of, and a direction 1 (forward)
or -1 (backward) for the iteration.

The method :foreach uses the iterator returned by :iter with a range as its sole argument to loop over
the rows where to apply the predicate before executing the action. The methods :select, :deselect,
:filter, :insert, and :remove are all based directly or indirectly on the :foreach method. Hence, to
iterate backward over a mtable range, these methods have to use either its list form or a numerical range. For
example the invocation tbl:foreach(\r -> print(r.name), {-2, 2, nil, -1}) will iterate back-
ward over the entire mtable excluding the first and last rows, equivalently to the invocation tbl:foreach(\r
-> print(r.name), -2..2..-1).

The following example shows how to access to the rows with the :foreach method:

local mtable in MAD
local tbl = mtable { {'name'}, 'x', 'y' }

+ { 'p11', 1.1, 1.2 }
+ { 'p12', 2.1, 2.2 }
+ { 'p13', 2.1, 3.2 }
+ { 'p11', 3.1, 4.2 }

(continues on next page)

8. EXTENDING A MTABLE 88

(continued from previous page)

local act = \r -> print(r.name, r.y)
tbl:foreach(act, -2..2..-1)
-- display: p13 3.2
! p12 2.2
tbl:foreach(act, "p11[1]/p11[2]")
-- display: p11 1.2
! p12 2.2
! p13 3.2
! p11 4.2
tbl:foreach{action=act, range="p11[1]/p13"}
-- display: p11 1.2
! p12 2.2
! p13 3.2
tbl:foreach{action=act, pattern="[^1]$"}
-- display: p12 2.2
! p13 3.2
local act = \r -> print(r.name, r.y, r.is_selected)
tbl:select{pattern="p.1"}:foreach{action=act, range="1/-1"}
-- display: p11 1.2 true
! p12 2.2 nil
! p13 3.2 nil
! p11 4.2 true

8 Examples

8.1 Creating a MTable

The following example shows how the track command, i.e. self hereafter, creates its MTable:

local header = { -- extra attributes to save in track headers
'direction', 'observe', 'implicit', 'misalign', 'deltap', 'lost' }

local function make_mtable (self, range, nosave)
local title, dir, observe, implicit, misalign, deltap, savemap in self
local sequ, nrow = self.sequence, nosave and 0 or 16

return mtable(sequ.name, { -- keep column order!
type='track', title=title, header=header,
direction=dir, observe=observe, implicit=implicit, misalign=misalign,
deltap=deltap, lost=0, range=range, reserve=nrow, __seq=sequ,
{'name'}, 'kind', 's', 'l', 'id', 'x', 'px', 'y', 'py', 't', 'pt',
'slc', 'turn', 'tdir', 'eidx', 'status', savemap and '__map' or nil })

end

8. EXTENDING A MTABLE 89

8.2 Extending a MTable

The following example shows how to extend the MTable created by a twiss command with the elements
tilt, angle and integrated strengths from the attached sequence:

-- The prelude creating the sequence seq is omitted.
local tws = twiss { sequence=seq, method=4, cofind=true }

local is_integer in MAD.typeid
tws:addcol('angle', \ri => -- add angle column

local idx = tws[ri].eidx
return is_integer(idx) and tws.__seq[idx].angle or 0 end)

:addcol('tilt', \ri => -- add tilt column
local idx = tws[ri].eidx
return is_integer(idx) and tws.__seq[idx].tilt or 0 end)

for i=1,6 do -- add kil and kisl columns
tws:addcol('k'..i-1..'l', \ri =>

local idx = tws[ri].eidx
if not is_integer(idx) then return 0 end -- implicit drift
local elm = tws.__seq[idx]
return (elm['k'..i-1] or 0)*elm.l + ((elm.knl or {})[i] or 0)

end)
:addcol('k'..i-1..'sl', \ri =>
local idx = tws[ri].eidx
if not is_integer(idx) then return 0 end -- implicit drift
local elm = tws.__seq[idx]
return (elm['k'..i-1..'s'] or 0)*elm.l + ((elm.ksl or {})[i] or 0)

end)
end

local cols = {'name', 'kind', 's', 'l', 'angle', 'tilt',
'x', 'px', 'y', 'py', 't', 'pt',
'beta11', 'beta22', 'alfa11', 'alfa22', 'mu1', 'mu2', 'dx', 'ddx',
'k1l', 'k2l', 'k3l', 'k4l', 'k1sl', 'k2sl', 'k3sl', 'k4sl'}

tws:write("twiss", cols) -- write header and columns to file twiss.tfs

Hopefully, the physics module provides the function melmcol(mtbl, cols) to achieve the same task easily:

-- The prelude creating the sequence seq is omitted.
local tws = twiss { sequence=seq, method=4, cofind=true }

-- Add element properties as columns
local melmcol in MAD.gphys
local melmcol(tws, {'angle', 'tilt', 'k1l' , 'k2l' , 'k3l' , 'k4l',

'k1sl', 'k2sl', 'k3sl', 'k4sl'})
(continues on next page)

8. EXTENDING A MTABLE 90

(continued from previous page)

-- write TFS table
tws:write("twiss", {

'name', 'kind', 's', 'l', 'angle', 'tilt',
'x', 'px', 'y', 'py', 't', 'pt',
'beta11', 'beta22', 'alfa11', 'alfa22', 'mu1', 'mu2', 'dx', 'ddx',
'k1l', 'k2l', 'k3l', 'k4l', 'k1sl', 'k2sl', 'k3sl', 'k4sl'})

91

Chapter 9. MADX

1 Environment

2 Importing Sequences

3 Converting Scripts

4 Converting Macros

92

Part II

ELEMENTS & COMMANDS

93

Chapter 10. Survey

The survey command provides a simple interface to the geometric tracking code.1 The geometric tracking
can be used to place the elements of a sequence in the global reference system in Fig. 18.2.

Listing 10.1: Synopsis of the survey command with default setup.

mtbl, mflw [, eidx] = survey {
sequence=sequ, -- sequence (required)
range=nil, -- range of tracking (or sequence.range)
dir=1, -- s-direction of tracking (1 or -1)
s0=0, -- initial s-position offset [m]
X0=0, -- initial coordinates x, y, z [m]
A0=0, -- initial angles theta, phi, psi [rad] or matrix W0
nturn=1, -- number of turns to track
nstep=-1, -- number of elements to track
nslice=1, -- number of slices (or weights) for each element
implicit=false, -- slice implicit elements too (e.g.~plots)
misalign=false, -- consider misalignment
save=true, -- create mtable and save results
title=nil, -- title of mtable (default seq.name)
observe=0, -- save only in observed elements (every n turns)
savesel=fnil, -- save selector (predicate)
savemap=false, -- save the orientation matrix W in the column __map
atentry=fnil, -- action called when entering an element
atslice=fnil, -- action called after each element slices
atexit=fnil, -- action called when exiting an element
atsave=fnil, -- action called when saving in mtable
atdebug=fnil, -- action called when debugging the element maps
info=nil, -- information level (output on terminal)
debug=nil, -- debug information level (output on terminal)
usrdef=nil, -- user defined data attached to the mflow
mflow=nil, -- mflow, exclusive with other attributes except nstep

}

1 Command synopsis

The survey command format is summarized in Listing 10.1, including the default setup of the attributes.
The survey command supports the following attributes:
sequence

The sequence to survey. (no default, required). Example: sequence = lhcb1.
range

A range specifying the span of the sequence survey. If no range is provided, the command looks for a
range attached to the sequence, i.e. the attribute . (default: nil).

1 MAD-NG implements only two tracking codes denominated the geometric and dynamic tracking

10. COMMAND SYNOPSIS 94

Example: range = "S.DS.L8.B1/E.DS.R8.B1".
dir

The 𝑠-direction of the tracking: 1 forward, -1 backward. (default: 1).
Example: dir = -1.

s0
A number specifying the initial 𝑠-position offset. (default: 0 [m]).
Example: s0 = 5000.

X0
A mappable specifying the initial coordinates {x,y,z}. (default: 0 [m]).
Example: X0 = { x=100, y=-50 }

A0
A mappable specifying the initial angles theta, phi and psi or an orientation matrix W0.2 (default:
0 [rad]).
Example: A0 = { theta=deg2rad(30) }

nturn
A number specifying the number of turn to track. (default: 1).
Example: nturn = 2.

nstep
A number specifying the number of element to track. A negative value will track all elements. (default:
-1).
Example: nstep = 1.

nslice
A number specifying the number of slices or an iterable of increasing relative positions or a callable
(elm, mflw, lw) returning one of the two previous kind of positions to track in the elements. The
arguments of the callable are in order, the current element, the tracked map flow, and the length weight
of the step. This attribute can be locally overridden by the element. (default: 1).
Example: nslice = 5.

implicit
A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting. (default:
false).
Example: implicit = true.

misalign
A logical indicating that misalignment must be considered. (default: false).
Example: implicit = true.

save
A logical specifying to create a mtable and record tracking information at the observation points. The
save attribute can also be a string specifying saving positions in the observed elements: "atentry",
"atslice", "atexit" (i.e. true), "atbound" (i.e. entry and exit), "atbody" (i.e. slices and exit)
and "atall". (default: true).
Example: save = false.

title
2 An orientation matrix can be obtained from the 3 angles with W=matrix(3):rotzxy(- phi,theta,psi)

10. COMMAND SYNOPSIS 95

A string specifying the title of the mtable. If no title is provided, the command looks for the name of
the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "Survey around IP5".

observe
A number specifying the observation points to consider for recording the tracking information. A zero
value will consider all elements, while a positive value will consider selected elements only, checked
with method :is_observed, every observe > 0 turns. (default: 0).
Example: observe = 1.

savesel
A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for observation, i.e.
the element is discarded if the predicate returns false. The arguments are in order, the current ele-
ment, the tracked map flow, the length weight of the slice and the slice index. (default: fnil) Example:
savesel = \e -> mylist[e.name] ~= nil.

savemap
A logical indicating to save the orientation matrix W in the column __map of the mtable. (default:
false).
Example: savemap = true.

atentry
A callable (elm, mflw, 0, -1) invoked at element entry. The arguments are in order, the current
element, the tracked map flow, zero length and the slice index -1. (default: fnil).
Example: atentry = myaction.

atslice
A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in order, the cur-
rent element, the tracked map flow, the length weight of the slice and the slice index. (default: fnil).
Example: atslice = myaction.

atexit
A callable (elm, mflw, 0, -2) invoked at element exit. The arguments are in order, the current
element, the tracked map flow, zero length and the slice index -2. (default: fnil).
Example: atexit = myaction.

atsave
A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit. The argu-
ments are in order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil).
Example: atsave = myaction.

atdebug
A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element maps during
the integration steps, i.e. within the slices. The arguments are in order, the current element, the tracked
map flow, the length weight of the integration step and a string specifying a debugging message, e.g.
"map_name:0" for entry and ":1" for exit. If the level debug ≥ 4 and atdebug is not specified,
the default function mdump is used. In some cases, extra arguments could be passed to the method.
(default: fnil).
Example: atdebug = myaction .

info
A number specifying the information level to control the verbosity of the output on the console. (de-

10. SURVEY MTABLE 96

fault: nil).
Example: info = 2.

debug
A number specifying the debug level to perform extra assertions and to control the verbosity of the
output on the console. (default: nil).
Example: debug = 2.

usrdef
Any user defined data that will be attached to the tracked map flow, which is internally passed to the
elements method :survey and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow
A mflow containing the current state of a survey command. If a map flow is provided, all attributes
are discarded except nstep, info and debug, as the command was already set up upon its creation.
(default: nil).
Example: mflow = mflow0.

The survey command returns the following objects in this order:
mtbl

A mtable corresponding to the TFS table of the survey command.
mflw

A mflow corresponding to the map flow of the survey command.
eidx

An optional number corresponding to the last surveyed element index in the sequence when nstep
was specified and stopped the command before the end of the range.

2 Survey mtable

The survey command returns a mtable where the information described hereafter is the default list of fields
written to the TFS files.3

The header of the mtable contains the fields in the default order:
name

The name of the command that created the mtable, e.g. "survey".
type

The type of the mtable, i.e. "survey".
title

The value of the command attribute title.
origin

The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".
date

The date of the creation of the mtable, e.g. "27/05/20".
3 The output of mtable in TFS files can be fully customized by the user.

10. SURVEY MTABLE 97

time
The time of the creation of the mtable, e.g. "19:18:36".

refcol
The reference column for the mtable dictionnary, e.g. "name".

direction
The value of the command attribute dir.

observe
The value of the command attribute observe.

implicit
The value of the command attribute implicit.

misalign
The value of the command attribute misalign.

range
The value of the command attribute range.4

__seq
The sequence from the command attribute sequence.5

The core of the mtable contains the columns in the default order:
name

The name of the element.
kind

The kind of the element.
s

The 𝑠-position at the end of the element slice.
l

The length from the start of the element to the end of the element slice.
angle

The angle from the start of the element to the end of the element slice.
tilt

The tilt of the element.
x

The global coordinate 𝑥 at the 𝑠-position.
y

The global coordinate 𝑦 at the 𝑠-position.
z

The global coordinate 𝑧 at the 𝑠-position.
theta

The global angle 𝜃 at the 𝑠-position.
phi

The global angle 𝜑 at the 𝑠-position.
4 This field is not saved in the TFS table by default.
5 Fields and columns starting with two underscores are protected data and never saved to TFS files.

10. SLICING 98

psi
The global angle 𝜓 at the 𝑠-position.

slc
The slice number ranging from -2 to nslice.

turn
The turn number.

tdir
The 𝑡-direction of the tracking in the element.

eidx
The index of the element in the sequence.

__map
The orientation matrix at the 𝑠-position.Page 97, 5

3 Geometrical tracking

Fig. 10.1 presents the scheme of the geometrical tracking through an element sliced with nslice=3. The
actions atentry (index -1), atslice (indexes 0..3), and atexit (index -2) are reversed between the
forward tracking (dir=1 with increasing 𝑠-position) and the backward tracking (dir=-1 with decreasing
𝑠-position). By default, the action atsave is attached to the exit slice, and hence it is also reversed in the
backward tracking.

Figure10.1: Geometrical tracking with slices.

10. EXAMPLES 99

3.1 Slicing

The slicing can take three different forms:

– A number of the form nslice=𝑁 that specifies the number of slices with indexes 0..N. This defines
a uniform slicing with slice length 𝑙slice = 𝑙elem/𝑁 .

– An iterable of the form nslice={lw_1,lw_2,..,lw_N} with
∑︀

𝑖 𝑙𝑤𝑖 = 1 that specifies the fraction
of length of each slice with indexes 0..N where 𝑁 =#nslice. This defines a non-uniform slicing
with a slice length of 𝑙𝑖 = 𝑙𝑤𝑖 × 𝑙elem.

– A callable (elm, mflw, lw) returning one of the two previous forms of slicing. The arguments are
in order, the current element, the tracked map flow, and the length weight of the step, which should
allow to return a user-defined element-specific slicing.

The surrounding P and P−1 maps represent the patches applied around the body of the element to change the
frames, after the atentry and before the atexit actions:

– The misalignment of the element to move from the global frame to the element frame if the command
attribute misalign is set to true.

– The tilt of the element to move from the element frame to the titled frame if the element attribute tilt
is non-zero. The atslice actions take place in this frame.

These patches do not change the global frame per se, but they may affect the way that other components
change the global frame, e.g. the tilt combined with the angle of a bending element.

3.2 Sub-elements

The survey command takes sub-elements into account, mainly for compatibility with the track command.
In this case, the slicing specification is taken between sub-elements, e.g. 3 slices with 2 sub-elements gives a
final count of 9 slices. It is possible to adjust the number of slices between sub-elements with the third form
of slicing specifier, i.e. by using a callable where the length weight argument is between the current (or the
end of the element) and the last sub-elements (or the start of the element).

4 Examples

100

Chapter 11. Track

The track command provides a simple interface to the dynamic tracking code.1 The dynamic tracking can
be used to track the particles in the local reference system while running through the elements of a sequence.
The particles coordinates can be expressed in the global reference system by changing from the local to the
global frames using the information delivered by the survey command.

Listing 11.1: Synopsis of the track command with default setup.

mtbl, mflw [, eidx] = track {
sequence=sequ, -- sequence (required)
beam=nil, -- beam (or sequence.beam, required)
range=nil, -- range of tracking (or sequence.range)
dir=1, -- s-direction of tracking (1 or -1)
s0=0, -- initial s-position offset [m]
X0=0, -- initial coordinates (or damap(s), or beta block(s))
O0=0, -- initial coordinates of reference orbit
deltap=nil, -- initial deltap(s)
nturn=1, -- number of turns to track
nstep=-1, -- number of elements to track
nslice=1, -- number of slices (or weights) for each element
mapdef=false, -- setup for damap (or list of, true => {})
method=2, -- method or order for integration (1 to 8)
model='TKT', -- model for integration ('DKD' or 'TKT')
ptcmodel=nil, -- use strict PTC thick model (override option)
implicit=false, -- slice implicit elements too (e.g. plots)
misalign=false, -- consider misalignment
fringe=true, -- enable fringe fields (see element.flags.fringe)
radiate=false, -- radiate at slices
totalpath=false, -- variable 't' is the totalpath
save=true, -- create mtable and save results
title=nil, -- title of mtable (default seq.name)
observe=1, -- save only in observed elements (every n turns)
savesel=fnil, -- save selector (predicate)
savemap=false, -- save damap in the column __map
atentry=fnil, -- action called when entering an element
atslice=fnil, -- action called after each element slices
atexit=fnil, -- action called when exiting an element
ataper=fnil, -- action called when checking for aperture
atsave=fnil, -- action called when saving in mtable
atdebug=fnil, -- action called when debugging the element maps
info=nil, -- information level (output on terminal)
debug=nil, -- debug information level (output on terminal)
usrdef=nil, -- user defined data attached to the mflow
mflow=nil, -- mflow, exclusive with other attributes except nstep

(continues on next page)

1 MAD-NG implements only two tracking codes denominated the geometric and the dynamic tracking.

11. COMMAND SYNOPSIS 101

(continued from previous page)

}

1 Command synopsis

The track command format is summarized in Listing 11.1, including the default setup of the attributes.

The track command supports the following attributes:
sequence

The sequence to track. (no default, required).
Example: sequence = lhcb1.

beam
The reference beam for the tracking. If no beam is provided, the command looks for a
beam attached to the sequence, i.e. the attribute seq.beam.2 (default: nil).
Example: beam = beam 'lhcbeam' { ... } where . . . are the beam-attributes.

range
A range specifying the span of the sequence track. If no range is provided, the command
looks for a range attached to the sequence, i.e. the attribute seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

dir
The 𝑠-direction of the tracking: 1 forward, -1 backward. (default: 1).
Example: dir = -1.

s0
A number specifying the initial 𝑠-position offset. (default: 0 [m]).
Example: s0 = 5000.

X0
A mappable (or a list of mappable) specifying initial coordinates {x,px,y,py,t,pt},
damap, or beta block for each tracked object, i.e. particle or damap. The beta blocks are
converted to damaps, while the coordinates are converted to damaps only if mapdef is
specified, but both will use mapdef to setup the damap constructor. Each tracked object
may also contain a beam to override the reference beam, and a logical nosave to discard
this object from being saved in the mtable. (default: 0).
Example: X0 = { x=1e-3, px=-1e-5 }.

O0
A mappable specifying initial coordinates {x,px,y,py,t,pt} of the reference orbit
around which X0 definitions take place. If it has the attribute cofind == true, it will be
used as an initial guess to search for the reference closed orbit. (default: 0).
Example: O0 = { x=1e-4, px=-2e-5, y=-2e-4, py=1e-5 }.

deltap
A number (or list of number) specifying the initial 𝛿𝑝 to convert (using the beam) and add
to the pt of each tracked particle or damap. (default: nil).
Example: s0 = 5000.

2 Initial coordinates X0 may override it by providing per particle or damap beam.

11. COMMAND SYNOPSIS 102

nturn
A number specifying the number of turn to track. (default: 1).
Example: nturn = 2.

nstep
A number specifying the number of element to track. A negative value will track all ele-
ments. (default: -1).
Example: nstep = 1.

nslice
A number specifying the number of slices or an iterable of increasing relative positions or
a callable (elm, mflw, lw) returning one of the two previous kind of positions to track
in the elements. The arguments of the callable are in order, the current element, the tracked
map flow, and the length weight of the step. This attribute can be locally overridden by the
element. (default: 1).
Example: nslice = 5.

mapdef
A logical or a damap specification as defined by the DAmap module to track DA maps
instead of particles coordinates. A value of true is equivalent to invoke the damap con-
structor with {} as argument. This attribute allows to track DA maps instead of particles.
(default: nil).
Example: mapdef = { xy=2, pt=5 }.

method
A number specifying the order of integration from 1 to 8, or a string specifying a special
method of integration. Odd orders are rounded to the next even order to select the corres-
ponding Yoshida or Boole integration schemes. The special methods are simple (equiv.
to DKD order 2), collim (equiv. to MKM order 2), and teapot (Teapot splitting order 2).
(default: 2).
Example: method = 'teapot'.

model
A string specifying the integration model, either 'DKD' for Drift-Kick-Drift thin lens in-
tegration or 'TKT' for Thick-Kick-Thick thick lens integration.3 (default: 'TKT')
Example: model = 'DKD'.

ptcmodel
A logical indicating to use strict PTC model.4 (default: nil)
Example: ptcmodel = true.

implicit
A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting.
(default: false).
Example: implicit = true.

misalign
A logical indicating that misalignment must be considered. (default: false).
Example: misalign = true.

3 The TKT scheme (Yoshida) is automatically converted to the MKM scheme (Boole) when approriate.
4 In all cases, MAD-NG uses PTC setup time=true, exact=true.

11. COMMAND SYNOPSIS 103

fringe
A logical indicating that fringe fields must be considered or a number specifying a bit
mask to apply to all elements fringe flags defined by the element module. The value true
is equivalent to the bit mask , i.e. allow all elements (default) fringe fields. (default: true).
Example: fringe = false.

radiate
A logical enabling or disabling the radiation or a string specifying the type of radiation:
'average' or 'quantum'. The value true is equivalent to 'average'. The value
'quantum+photon' enables the tracking of emitted photons. (default: false).
Example: radiate = 'quantum'.

totalpath
A logical indicating to use the totalpath for the fifth variable 't' instead of the local path.
(default: false).
Example: totalpath = true.

save
A logical specifying to create a mtable and record tracking information at the observation
points. The save attribute can also be a string specifying saving positions in the observed
elements: "atentry", "atslice", "atexit" (i.e. true), "atbound" (i.e. entry and
exit), "atbody" (i.e. slices and exit) and "atall". (default: true).
Example: save = false.

title
A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "track around IP5".

observe
A number specifying the observation points to consider for recording the tracking inform-
ation. A zero value will consider all elements, while a positive value will consider selected
elements only, checked with method :is_observed, every observe > 0 turns. (default:
1).
Example: observe = 1.

savesel
A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for ob-
servation, i.e. the element is discarded if the predicate returns false. The arguments are
in order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil)
Example: savesel = \e -> mylist[e.name] ~= nil.

savemap
A logical indicating to save the damap in the column __map of the mtable. (default:
false).
Example: savemap = true.

atentry
A callable (elm, mflw, 0, -1) invoked at element entry. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index . (default: fnil).
Example: atentry = myaction.

11. COMMAND SYNOPSIS 104

atslice
A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in
order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil).
Example: atslice = myaction.

atexit
A callable (elm, mflw, 0, -2) invoked at element exit. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index . (default: fnil).
Example: atexit = myaction.

ataper
A callable (elm, mflw, lw, islc) invoked at element aperture checks, by default at
last slice. The arguments are in order, the current element, the tracked map flow, the length
weight of the slice and the slice index. If a particle or a damap hits the aperture, then its
status = "lost" and it is removed from the list of tracked items. (default: fnil).
Example: ataper = myaction.

atsave
A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit.
The arguments are in order, the current element, the tracked map flow, the length weight
of the slice and the slice index. (default: fnil).
Example: atsave = myaction.

atdebug
A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element
maps during the integration steps, i.e. within the slices. The arguments are in order, the
current element, the tracked map flow, the length weight of the integration step and a string
specifying a debugging message, e.g. "map_name:0" for entry and ":1" for exit. If the
level debug≥ 4 and atdebug is not specified, the default function mdump is used. In some
cases, extra arguments could be passed to the method. (default: fnil).
Example: atdebug = myaction.

info
A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug
A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

usrdef
Any user defined data that will be attached to the tracked map flow, which is internally
passed to the elements method :track and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow
An mflow containing the current state of a track command. If a map flow is provided, all
attributes are discarded except nstep, info and debug, as the command was already set
up upon its creation. (default: nil).

11. TRACK MTABLE 105

Example: mflow = mflow0.

The track command returns the following objects in this order:
mtbl

An mtable corresponding to the TFS table of the track command.
mflw

An mflow corresponding to the map flow of the track command.
eidx

An optional number corresponding to the last tracked element index in the sequence when
nstep was specified and stopped the command before the end of the range.

2 Track mtable

The track command returns a mtable where the information described hereafter is the default list of fields
written to the TFS files.5

The header of the mtable contains the fields in the default order:
name

The name of the command that created the mtable, e.g. "track".
type

The type of the mtable, i.e. "track".
title

The value of the command attribute title.
origin

The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".
date

The date of the creation of the mtable, e.g. "27/05/20".
time

The time of the creation of the mtable, e.g. "19:18:36".
refcol

The reference column for the mtable dictionnary, e.g. "name".
direction

The value of the command attribute dir.
observe

The value of the command attribute observe.
implicit

The value of the command attribute implicit.
misalign

The value of the command attribute misalign.
deltap

The value of the command attribute deltap.
5 The output of mtable in TFS files can be fully customized by the user.

11. TRACK MTABLE 106

lost
The number of lost particle(s) or damap(s).

range
The value of the command attribute range.6

__seq
The sequence from the command attribute sequence.7 :

The core of the mtable contains the columns in the default order:
name

The name of the element.
kind

The kind of the element.
s

The 𝑠-position at the end of the element slice.
l

The length from the start of the element to the end of the element slice.
id

The index of the particle or damap as provided in X0.
x

The local coordinate 𝑥 at the 𝑠-position.
px

The local coordinate 𝑝𝑥 at the 𝑠-position.
y

The local coordinate 𝑦 at the 𝑠-position.
py

The local coordinate 𝑝𝑦 at the 𝑠-position.
t

The local coordinate 𝑡 at the 𝑠-position.
pt

The local coordinate 𝑝𝑡 at the 𝑠-position.
pc

The reference beam 𝑃0𝑐 in which 𝑝𝑡 is expressed.
slc

The slice index ranging from -2 to nslice.
turn

The turn number.
tdir

The 𝑡-direction of the tracking in the element.
eidx

The index of the element in the sequence.
6 This field is not saved in the TFS table by default.
7 Fields and columns starting with two underscores are protected data and never saved to TFS files.

11. SLICING 107

status
The status of the particle or damap.

__map
The damap at the 𝑠-position.Page 106, 7

3 Dynamical tracking

Fig. 11.1 presents the scheme of the dynamical tracking through an element sliced with nslice=3. The
actions atentry (index -1), atslice (indexes 0..3), and atexit (index -2) are reversed between the
forward tracking (dir=1 with increasing 𝑠-position) and the backward tracking (dir=-1 with decreasing
𝑠-position). By default, the action atsave is attached to the exit slice and the action ataper is attached to
the last slice just before exit, i.e. to the last atslice action in the tilted frame, and hence they are also both
reversed in the backward tracking.

Figure11.1: Dynamical tracking with slices.

3.1 Slicing

The slicing can take three different forms:

– A number of the form nslice=N that specifies the number of slices with indexes 0..:math:N. This
defines a uniform slicing with slice length 𝑙slice = 𝑙elem/𝑁 .

– An iterable of the form nslice={lw_1,lw_2,..,lw_N} with
∑︀

𝑖 𝑙𝑤𝑖 = 1 that specifies the fraction
of length of each slice with indexes 0 .. 𝑁 where 𝑁=#nslice. This defines a non-uniform slicing
with a slice length of 𝑙𝑖 = 𝑙𝑤𝑖 × 𝑙elem.

– A callable (elm, mflw, lw) returning one of the two previous forms of slicing. The arguments are
in order, the current element, the tracked map flow, and the length weight of the step, which should
allow to return a user-defined element-specific slicing.

11. EXAMPLES 108

The surrounding 𝑃 and 𝑃−1 maps represent the patches applied around the body of the element to change
the frames, after the atentry and before the atexit actions:

– The misalignment of the element to move from the global frame to the element frame if the command
attribute misalign is set to true.

– The tilt of the element to move from the element frame to the titled frame if the element attribute tilt
is non-zero. The atslice actions take place in this frame.

The map frame is specific to some maps while tracking through the body of the element. In principle, the
map frame is not visible to the user, only to the integrator. For example, a quadrupole with both k1 and
k1s defined will have a map frame tilted by the angle 𝛼 = −1

2 tan
−1 𝑘1𝑠

𝑘1 attached to its thick map, i.e. the
focusing matrix handling only 𝑘1 =

√
𝑘12 + 𝑘1𝑠2, but not to its thin map, i.e. the kick from all multipoles

(minus k1 and k1s) expressed in the tilted frame, during the integration steps.

3.2 Sub-elements

The track command takes sub-elements into account. In this case, the slicing specification is taken between
sub-elements, e.g. 3 slices with 2 sub-elements gives a final count of 9 slices. It is possible to adjust the
number of slices between sub-elements with the third form of slicing specifier, i.e. by using a callable where
the length weight argument is between the current (or the end of the element) and the last sub-elements (or
the start of the element).

3.3 Particles status

The track command initializes the map flow with particles or damaps or both, depending on the attributes
X0 and mapdef. The status attribute of each particle or damap will be set to one of "Xset", "Mset", and
"Aset" to track the origin of its initialization: coordinates, damap, or normalizing damap (normal form or
beta block). After the tracking, some particles or damaps may have the status "lost" and their number being
recorded in the counter lost from TFS table header. Other commands like cofind or twiss may add extra
tags to the status value, like "stable", "unstable" and "singular".

4 Examples

109

Chapter 12. Cofind

The cofind command (i.e. closed orbit finder) provides a simple interface to find a closed orbit using the
Newton algorithm on top of the track command.

1 Command synopsis

Listing 12.1: Synopsis of the cofind command with default setup.

mtbl, mflw = cofind} {
sequence=sequ, -- sequence (required)
beam=nil, -- beam (or sequence.beam, required)
range=nil, -- range of tracking (or sequence.range)
dir=nil, -- s-direction of tracking (1 or -1)
s0=nil, -- initial s-position offset [m]
X0=nil, -- initial coordinates (or damap, or beta block)
O0=nil, -- initial coordinates of reference orbit
deltap=nil, -- initial deltap(s)
nturn=nil, -- number of turns to track
nslice=nil, -- number of slices (or weights) for each element
mapdef=true, -- setup for damap (or list of, true => {})
method=nil, -- method or order for integration (1 to 8)
model=nil, -- model for integration ('DKD' or 'TKT')
ptcmodel=nil, -- use strict PTC thick model (override option)
implicit=nil, -- slice implicit elements too (e.g. plots)
misalign=nil, -- consider misalignment
fringe=nil, -- enable fringe fields (see element.flags.fringe)
radiate=nil, -- radiate at slices
totalpath=nil, -- variable 't' is the totalpath
save=false, -- create mtable and save results
title=nil, -- title of mtable (default seq.name)
observe=nil, -- save only in observed elements (every n turns)
savesel=nil, -- save selector (predicate)
savemap=nil, -- save damap in the column __map
atentry=nil, -- action called when entering an element
atslice=nil, -- action called after each element slices
atexit=nil, -- action called when exiting an element
ataper=nil, -- action called when checking for aperture
atsave=nil, -- action called when saving in mtable
atdebug=fnil, -- action called when debugging the element maps
codiff=1e-10, -- finite differences step for jacobian
coiter=20, -- maximum number of iterations
cotol=1e-8, -- closed orbit tolerance (i.e.~|dX|)
X1=0, -- optional final coordinates translation
info=nil, -- information level (output on terminal)

(continues on next page)

12. COMMAND SYNOPSIS 110

(continued from previous page)

debug=nil, -- debug information level (output on terminal)
usrdef=nil, -- user defined data attached to the mflow
mflow=nil, -- mflow, exclusive with other attributes

}

The cofind command format is summarized in Listing 12.1, including the default setup of the attributes.
Most of these attributes are set to nil by default, meaning that cofind relies on the track command defaults.

The cofind command supports the following attributes:
sequence

The sequence to track. (no default, required).
Example: sequence = lhcb1.

beam
The reference beam for the tracking. If no beam is provided, the command looks for a
beam attached to the sequence, i.e. the attribute seq.beam. (default: nil)
Example: beam = beam 'lhcbeam' { beam-attributes }.1

range
A range specifying the span of the sequence track. If no range is provided, the command
looks for a range attached to the sequence, i.e. the attribute seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

dir
The 𝑠-direction of the tracking: 1 forward, -1 backward. (default: nil).
Example: dir = -1.

s0
A number specifying the initial 𝑠-position offset. (default: nil).
Example: s0 = 5000.

X0
A mappable (or a list of mappable) specifying initial coordinates {x,px,y,py, t,pt},
damap, or beta block for each tracked object, i.e. particle or damap. The beta blocks are
converted to damaps, while the coordinates are converted to damaps only if mapdef is
specified, but both will use mapdef to setup the damap constructor. Each tracked object
may also contain a beam to override the reference beam, and a logical nosave to discard
this object from being saved in the mtable. (default: nil).
Example: X0 = { x=1e-3, px=-1e-5 }.

O0
A mappable specifying initial coordinates {x,px,y,py,t,pt} of the reference orbit
around which X0 definitions take place. If it has the attribute cofind == true, it will be
used as an initial guess to search for the reference closed orbit. (default: 0).
Example: O0 = { x=1e-4, px=-2e-5, y=-2e-4, py=1e-5 }.

deltap
A number (or list of number) specifying the initial 𝛿𝑝 to convert (using the beam) and add
to the pt of each tracked particle or damap. (default:nil).

1 Initial coordinates X0 may override it by providing a beam per particle or damap.

12. COMMAND SYNOPSIS 111

Example: s0 = 5000.
nturn

A number specifying the number of turn to track. (default: nil).
Example: nturn = 2.

nstep
A number specifying the number of element to track. A negative value will track all ele-
ments. (default: nil).
Example: nstep = 1.

nslice
A number specifying the number of slices or an iterable of increasing relative positions or
a callable (elm, mflw, lw) returning one of the two previous kind of positions to track
in the elements. The arguments of the callable are in order, the current element, the tracked
map flow, and the length weight of the step. This attribute can be locally overridden by the
element. (default: nil).
Example: nslice = 5.

mapdef
A logical or a damap specification as defined by the DAmap module to track DA maps
instead of particles coordinates. A value of true is equivalent to invoke the damap con-
structor with {} as argument. A value of false or nil disable the use of damaps and
force cofind to replace each particles or damaps by seven particles to approximate their
Jacobian by finite difference. (default: true).
Example: mapdef = { xy=2, pt=5 }.

method
A number specifying the order of integration from 1 to 8, or a string specifying a special
method of integration. Odd orders are rounded to the next even order to select the corres-
ponding Yoshida or Boole integration schemes. The special methods are simple (equiv.
to DKD order 2), collim (equiv. to MKM order 2), and teapot (Teapot splitting order 2).
(default: nil).
Example: method = 'teapot'.

model
A string specifying the integration model, either 'DKD' for Drift-Kick-Drift thin lens in-
tegration or 'TKT' for Thick-Kick-Thick thick lens integration.2 (default: nil)
Example: model = 'DKD'.

ptcmodel
A logical indicating to use strict PTC model.3 (default: nil)
Example: ptcmodel = true.

implicit
A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting.
(default: nil).
Example: implicit = true.

misalign
2 The TKT scheme (Yoshida) is automatically converted to the MKM scheme (Boole) when appropriate.
3 In all cases, MAD-NG uses PTC setup time=true, exact=true.

12. COMMAND SYNOPSIS 112

A logical indicating that misalignment must be considered. (default: nil).
Example: misalign = true.

fringe
A logical indicating that fringe fields must be considered or a number specifying a bit
mask to apply to all elements fringe flags defined by the element module. The value true
is equivalent to the bit mask , i.e. allow all elements (default) fringe fields. (default: nil).
Example: fringe = false.

radiate
A logical enabling or disabling the radiation or the string specifying the 'average' type
of radiation. The value true is equivalent to 'average' and the value 'quantum' is
converted to 'average'. (default: nil).
Example: radiate = 'average'.

totalpath
A logical indicating to use the totalpath for the fifth variable 't' instead of the local path.
(default: nil).
Example: totalpath = true.

save
A logical specifying to create a mtable and record tracking information at the observation
points. The save attribute can also be a string specifying saving positions in the observed
elements: "atentry", "atslice", "atexit" (i.e. true), "atbound" (i.e. entry and
exit), "atbody" (i.e. slices and exit) and "atall". (default: false).
Example: save = false.

title
A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "track around IP5".

observe
A number specifying the observation points to consider for recording the tracking inform-
ation. A zero value will consider all elements, while a positive value will consider selected
elements only, checked with method :is_observed, every observe> 0 turns. (default:
nil).
Example: observe = 1.

savesel
A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for ob-
servation, i.e. the element is discarded if the predicate returns false. The arguments are
in order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: nil)
Example: savesel = \e -> mylist[e.name] ~= nil.

savemap
A logical indicating to save the damap in the column __map of the mtable. (default: nil).
Example: savemap = true.

atentry
A callable (elm, mflw, 0, -1) invoked at element entry. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index -1. (default:

12. COMMAND SYNOPSIS 113

nil).
Example: atentry = myaction.

atslice
A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in
order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: nil).
Example: atslice = myaction.

atexit
A callable (elm, mflw, 0, -2) invoked at element exit. The arguments are in order,
the current element, the tracked map flow, zero length and the slice index . (default: nil).
Example: atexit = myaction.

ataper
A callable (elm, mflw, lw, islc) invoked at element aperture checks, by default at
last slice. The arguments are in order, the current element, the tracked map flow, the length
weight of the slice and the slice index. If a particle or a damap hits the aperture, then its
status="lost" and it is removed from the list of tracked items. (default: fnil).
Example: ataper = myaction.

atsave
A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit.
The arguments are in order, the current element, the tracked map flow, the length weight
of the slice and the slice index. (default: nil).
Example: atsave = myaction.

atdebug
A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element
maps during the integration steps, i.e. within the slices. The arguments are in order, the
current element, the tracked map flow, the length weight of the integration step and a string
specifying a debugging message, e.g. "map_name:0" for entry and ":1" for exit. If the
level debug≥ 4 and atdebug is not specified, the default function mdump is used. In some
cases, extra arguments could be passed to the method. (default: fnil).
Example: atdebug = myaction.

codiff
A number specifying the finite difference step to approximate the Jacobian when damaps
are disabled. If codiff is larger than 100×cotol, it will be adjusted to cotol /100 and
a warning will be emitted. (default: 1e-8).
Example: codiff = 1e-10.

coiter
A number specifying the maximum number of iteration. If this threshold is reached, all
the remaining tracked objects are tagged as "unstable". (default: 20).
Example: coiter = 5.

cotol
A number specifying the closed orbit tolerance. If all coordinates update of a particle or a
damap are smaller than cotol, then it is tagged as "stable". (default: 1e-8).
Example: cotol = 1e-6.

X1

12. EXAMPLES 114

A mappable specifying the coordinates {x,px,y,py,t,pt} to subtract to the final co-
ordinates of the particles or the damaps. (default: 0).
Example: X1 = { t=100, pt=10 }.

info
A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug
A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil).
Example: debug = 2.

usrdef
Any user defined data that will be attached to the tracked map flow, which is internally
passed to the elements method :track and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow
A mflow containing the current state of a track command. If a map flow is provided, all
attributes are discarded except nstep, info and debug, as the command was already set
up upon its creation. (default: nil).
Example: mflow = mflow0.

The cofind command stops when all particles or damap are tagged as "stable", "unstable",
"singular" or "lost". The cofind command returns the following objects in this order:

mtbl
A mtable corresponding to the TFS table of the track command where the status column
may also contain the new values "stable", "unstable" or "singular".

mflw
A mflow corresponding to the map flow of the track command. The particles or damaps
status are tagged and ordered by "stable", "unstable", "singular", "lost" and
id.

2 Cofind mtable

The cofind command returns the track mtable unmodified except for the status column. The tracked
objects id will appear once per iteration at the $end marker, and other defined observation points if any, until
they are removed from the list of tracked objects.

12. EXAMPLES 115

3 Examples

TODO

116

Chapter 13. Twiss

The twiss command provides a simple interface to compute the optical functions around an orbit on top of
the track command, and the cofind command if the search for closed orbits is requested.

1 Command synopsis

The twiss command format is summarized in Listing 13.1, including the default setup of the attributes.
Most of these attributes are set to nil by default, meaning that twiss relies on the track and the cofind
commands defaults.

Listing 13.1: Synopsis of the twiss command with default setup.

mtbl, mflw [, eidx] = twiss {
sequence=sequ, -- sequence (required)
beam=nil, -- beam (or sequence.beam, required)
range=nil, -- range of tracking (or sequence.range)
dir=nil, -- s-direction of tracking (1 or -1)
s0=nil, -- initial s-position offset [m]
X0=nil, -- initial coordinates (or damap(s), or beta block(s))
O0=nil, -- initial coordinates of reference orbit
deltap=nil, -- initial deltap(s)
chrom=false, -- compute chromatic functions by finite difference
coupling=false, -- compute optical functions for non-diagonal modes
nturn=nil, -- number of turns to track
nstep=nil, -- number of elements to track
nslice=nil, -- number of slices (or weights) for each element
mapdef=true, -- setup for damap (or list of, true => {})
method=nil, -- method or order for integration (1 to 8)
model=nil, -- model for integration ('DKD' or 'TKT')
ptcmodel=nil, -- use strict PTC thick model (override option)
implicit=nil, -- slice implicit elements too (e.g. plots)
misalign=nil, -- consider misalignment
fringe=nil, -- enable fringe fields (see element.flags.fringe)
radiate=nil, -- radiate at slices
totalpath=nil, -- variable 't' is the totalpath
save=true, -- create mtable and save results
title=nil, -- title of mtable (default seq.name)
observe=0, -- save only in observed elements (every n turns)
savesel=nil, -- save selector (predicate)
savemap=nil, -- save damap in the column __map
atentry=nil, -- action called when entering an element
atslice=nil, -- action called after each element slices
atexit=nil, -- action called when exiting an element
ataper=nil, -- action called when checking for aperture
atsave=nil, -- action called when saving in mtable

(continues on next page)

13. COMMAND SYNOPSIS 117

(continued from previous page)

atdebug=fnil, -- action called when debugging the element maps
codiff=nil, -- finite differences step for jacobian
coiter=nil, -- maximum number of iterations
cotol=nil, -- closed orbit tolerance (i.e.~|dX|)
X1=nil, -- optional final coordinates translation
info=nil, -- information level (output on terminal)
debug=nil, -- debug information level (output on terminal)
usrdef=nil, -- user defined data attached to the mflow
mflow=nil, -- mflow, exclusive with other attributes

}

The twiss command supports the following attributes:
sequence

The sequence to track. (no default, required).
Example: sequence = lhcb1.

beam
The reference beam for the tracking. If no beam is provided, the command looks for a beam attached
to the sequence, i.e. the attribute seq.beam .1 (default: nil).
Example: beam = beam 'lhcbeam' { beam-attributes }.

range
A range specifying the span of the sequence track. If no range is provided, the command looks for a
range attached to the sequence, i.e. the attribute seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

dir
The 𝑠-direction of the tracking: 1 forward, -1 backward. (default: nil).
Example: dir = -1.

s0
A number specifying the initial 𝑠-position offset. (default: nil).
Example: s0 = 5000.

X0
A mappable (or a list of mappable) specifying initial coordinates {x,px,y,py, t,pt}, damap, or
beta0 block for each tracked object, i.e. particle or damap. The beta0 blocks are converted to damaps,
while the coordinates are converted to damaps only if mapdef is specified, but both will use mapdef
to setup the damap constructor. A closed orbit will be automatically searched for damaps built from
coordinates. Each tracked object may also contain a beam to override the reference beam, and a logical
nosave to discard this object from being saved in the mtable. (default: 0).
Example: X0 = { x=1e-3, px=-1e-5 }.

O0
A mappable specifying initial coordinates {x,px,y,py,t,pt} of the reference orbit around which
X0 definitions take place. If it has the attribute cofind == true, it will be used as an initial guess to
search for the reference closed orbit. (default: 0).
Example: O0 = { x=1e-4, px=-2e-5, y=-2e-4, py=1e-5 }.

1 Initial coordinates X0 may override it by providing a beam per particle or damap.

13. COMMAND SYNOPSIS 118

deltap
A number (or list of number) specifying the initial 𝛿𝑝 to convert (using the beam) and add to the pt of
each tracked particle or damap. (default: nil).
Example: s0 = 5000.

chrom
A logical specifying to calculate the chromatic functions by finite different using an extra 𝛿𝑝 = 1e-6.
(default: false).
Example: chrom = true.

coupling
A logical specifying to calculate the optical functions for coupling terms in the normalized forms.
(default: false).
Example: chrom = true.

nturn
A number specifying the number of turn to track. (default: nil).
Example: nturn = 2.

nstep
A number specifying the number of element to track. A negative value will track all elements. (default:
nil).
Example: nstep = 1.

nslice
A number specifying the number of slices or an iterable of increasing relative positions or a callable
(elm, mflw, lw) returning one of the two previous kind of positions to track in the elements. The
arguments of the callable are in order, the current element, the tracked map flow, and the length weight
of the step. This attribute can be locally overridden by the element. (default: nil).
Example: nslice = 5.

mapdef
A logical or a damap specification as defined by the DAmap module to track DA maps instead of
particles coordinates. A value of true is equivalent to invoke the damap constructor with {} as
argument. A value of false or nilwill be internally forced to true for the tracking of the normalized
forms. (default: true).
Example: mapdef = { xy=2, pt=5 }.

method
A number specifying the order of integration from 1 to 8, or a string specifying a special method of
integration. Odd orders are rounded to the next even order to select the corresponding Yoshida or
Boole integration schemes. The special methods are simple (equiv. to DKD order 2), collim (equiv.
to MKM order 2), and teapot (Teapot splitting order 2). (default: nil).
Example: method = 'teapot'.

model
A string specifying the integration model, either 'DKD' for Drift-Kick-Drift thin lens integration or
'TKT' for Thick-Kick-Thick thick lens integration.2 (default: nil)
Example: model = 'DKD'.

ptcmodel
2 The TKT scheme (Yoshida) is automatically converted to the MKM scheme (Boole) when appropriate.

13. COMMAND SYNOPSIS 119

A logical indicating to use strict PTC model.3 (default: nil)
Example: ptcmodel = true.

implicit
A logical indicating that implicit elements must be sliced too, e.g. for smooth plotting. (default: nil).
Example: implicit = true.

misalign
A logical indicating that misalignment must be considered. (default: nil).
Example: misalign = true.

fringe
A logical indicating that fringe fields must be considered or a number specifying a bit mask to apply
to all elements fringe flags defined by the element module. The value true is equivalent to the bit
mask , i.e. allow all elements (default) fringe fields. (default: nil).
Example: fringe = false.

radiate
A logical enabling or disabling the radiation or the string specifying the 'average' type of radiation
during the closed orbit search. The value true is equivalent to 'average' and the value 'quantum'
is converted to 'average'. (default: nil).
Example: radiate = 'average'.

totalpath
A logical indicating to use the totalpath for the fifth variable 't' instead of the local path. (default:
nil).
Example: totalpath = true.

save
A logical specifying to create a mtable and record tracking information at the observation points. The
save attribute can also be a string specifying saving positions in the observed elements: "atentry",
"atslice", "atexit" (i.e. true), "atbound" (i.e. entry and exit), "atbody" (i.e. slices and exit)
and "atall". (default: false).
Example: save = false.

title
A string specifying the title of the mtable. If no title is provided, the command looks for the name of
the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "track around IP5".

observe
A number specifying the observation points to consider for recording the tracking information. A zero
value will consider all elements, while a positive value will consider selected elements only, checked
with method :is_observed, every observe> 0 turns. (default: nil).
Example: observe = 1.

savesel
A callable (elm, mflw, lw, islc) acting as a predicate on selected elements for observation, i.e.
the element is discarded if the predicate returns false. The arguments are in order, the current ele-
ment, the tracked map flow, the length weight of the slice and the slice index. (default: fnil)
Example: savesel = \e -> mylist[e.name] ~= nil.

3 In all cases, MAD-NG uses PTC setup time=true, exact=true.

13. COMMAND SYNOPSIS 120

savemap
A logical indicating to save the damap in the column __map of the mtable. (default: nil).
Example: savemap = true.

atentry
A callable (elm, mflw, 0, -1) invoked at element entry. The arguments are in order, the current
element, the tracked map flow, zero length and the slice index -1. (default: fnil). Example: atentry
= myaction.

atslice
A callable (elm, mflw, lw, islc) invoked at element slice. The arguments are in order, the cur-
rent element, the tracked map flow, the length weight of the slice and the slice index. (default: fnil).
Example: atslice = myaction.

atexit
A callable (elm, mflw, 0, -2) invoked at element exit. The arguments are in order, the current
element, the tracked map flow, zero length and the slice index . (default: fnil).
Example: atexit = myaction.

ataper
A callable (elm, mflw, lw, islc) invoked at element aperture checks, by default at last slice. The
arguments are in order, the current element, the tracked map flow, the length weight of the slice and
the slice index. If a particle or a damap hits the aperture, then its status="lost" and it is removed
from the list of tracked items. (default: fnil).
Example: ataper = myaction.

atsave
A callable (elm, mflw, lw, islc) invoked at element saving steps, by default at exit. The argu-
ments are in order, the current element, the tracked map flow, the length weight of the slice and the
slice index. (default: fnil).
Example: atsave = myaction.

atdebug
A callable (elm, mflw, lw, [msg], [...]) invoked at the entry and exit of element maps during
the integration steps, i.e. within the slices. The arguments are in order, the current element, the tracked
map flow, the length weight of the integration step and a string specifying a debugging message, e.g.
"map_name:0" for entry and ":1" for exit. If the level debug ≥ 4 and atdebug is not specified,
the default function mdump is used. In some cases, extra arguments could be passed to the method.
(default: fnil).
Example: atdebug = myaction.

codiff
A number specifying the finite difference step to approximate the Jacobian when damaps are disabled.
If codiff is larger than 100×cotol, it will be adjusted to cotol /100 and a warning will be emitted.
(default: 1e-8).
Example: codiff = 1e-10.

coiter
A number specifying the maximum number of iteration. If this threshold is reached, all the remaining
tracked objects are tagged as "unstable". (default: 20).
Example: coiter = 5.

cotol

13. TWISS MTABLE 121

A number specifying the closed orbit tolerance. If all coordinates update of a particle or a damap are
smaller than cotol, then it is tagged as "stable". (default: 1e-8).
Example: cotol = 1e-6.

X1
A mappable specifying the coordinates {x,px,y,py,t,pt} to subtract to the final coordinates of the
particles or the damaps. (default: 0).
Example: X1 = { t=100, pt=10 }.

info
A number specifying the information level to control the verbosity of the output on the console. (de-
fault: nil). Example: info = 2.

debug
A number specifying the debug level to perform extra assertions and to control the verbosity of the
output on the console. (default: nil). Example: debug = 2.

usrdef
Any user defined data that will be attached to the tracked map flow, which is internally passed to the
elements method :track and to their underlying maps. (default: nil).
Example: usrdef = { myvar=somevalue }.

mflow
A mflow containing the current state of a track command. If a map flow is provided, all attributes
are discarded except nstep, info and debug, as the command was already set up upon its creation.
(default: nil).
Example: mflow = mflow0.

The twiss command returns the following objects in this order:

mtbl} A mtable corresponding to the augmented TFS table of the track command with the twiss command
columns.

mflw A mflow corresponding to the augmented map flow of the track command with the twiss command
data.
eidx

An optional number corresponding to the last tracked element index in the sequence when nstep was
specified and stopped the command before the end of the range.

2 Twiss mtable

The twiss command returns a mtable where the information described hereafter is the default list of fields
written to the TFS files.4

The header of the mtable contains the fields in the default order:5
name

The name of the command that created the mtable, e.g. "track".
type

The type of the mtable, i.e. "track".
4 The output of mtable in TFS files can be fully customized by the user.
5 The fields from name to lost set by the track command

13. TWISS MTABLE 122

title
The value of the command attribute title.

origin
The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".

date
The date of the creation of the mtable, e.g. "27/05/20".

time
The time of the creation of the mtable, e.g. "19:18:36".

refcol
The reference column for the mtable dictionnary, e.g. "name".

direction
The value of the command attribute dir.

observe
The value of the command attribute observe.

implicit
The value of the command attribute implicit.

misalign
The value of the command attribute misalign.

deltap
The value of the command attribute deltap.

lost
The number of lost particle(s) or damap(s).

chrom
The value of the command attribute chrom.

coupling
The value of the command attribute coupling.

length
The 𝑠-length of the tracked design orbit.

q1
The tunes of mode 1.

q2
The tunes of mode 2.

q3
The tunes of mode 3.

alfap
The momentum compaction factor 𝛼𝑝.

etap
The phase slip factor 𝜂𝑝.

gammatr
The energy gamma transition 𝛾tr.

synch_1
The first synchroton radiation integral.

13. TWISS MTABLE 123

synch_2
The second synchroton radiation integral.

synch_3
The third synchroton radiation integral.

synch_4
The fourth synchroton radiation integral.

synch_5
The fifth synchroton radiation integral.

synch_6
The sixth synchroton radiation integral.

synch_8
The eighth synchroton radiation integral.

range
The value of the command attribute range.6

__seq
The sequence from the command attribute sequence.7

The core of the mtable contains the columns in the default order:8
name

The name of the element.
kind

The kind of the element.
s

The 𝑠-position at the end of the element slice.
l

The length from the start of the element to the end of the element slice.
id

The index of the particle or damap as provided in X0.
x

The local coordinate 𝑥 at the 𝑠-position .
px

The local coordinate 𝑝𝑥 at the 𝑠-position.
y

The local coordinate 𝑦 at the 𝑠-position.
py

The local coordinate 𝑝𝑦 at the 𝑠-position.
t

The local coordinate 𝑡 at the 𝑠-position.
pt

The local coordinate 𝑝𝑡 at the 𝑠-position.
6 This field is not saved in the TFS table by default.
7 Fields and columns starting with two underscores are protected data and never saved to TFS files.
8 The column from name to status are set by the track command.

13. TWISS MTABLE 124

slc
The slice index ranging from -2 to nslice.

turn
The turn number.

tdir
The 𝑡-direction of the tracking in the element.

eidx
The index of the element in the sequence.

status
The status of the particle or damap.

alfa11
The optical function 𝛼 of mode 1 at the 𝑠-position.

beta11
The optical function 𝛽 of mode 1 at the 𝑠-position.

gama11
The optical function 𝛾 of mode 1 at the 𝑠-position.

mu1
The phase advance 𝜇 of mode 1 at the 𝑠-position.

dx
The dispersion function of 𝑥 at the 𝑠-position.

dpx
The dispersion function of 𝑝𝑥 at the 𝑠-position.

alfa22
The optical function 𝛼 of mode 2 at the 𝑠-position.

beta22
The optical function 𝛽 of mode 2 at the 𝑠-position.

gama22
The optical function 𝛾 of mode 2 at the 𝑠-position.

mu2
The phase advance 𝜇 of mode 2 at the 𝑠-position.

dy
The dispersion function of 𝑦 at the 𝑠-position.

dpy
The dispersion function of 𝑝𝑦 at the 𝑠-position.

alfa33
The optical function 𝛼 of mode 3 at the 𝑠-position.

beta33
The optical function 𝛽 of mode 3 at the 𝑠-position.

gama33
The optical function 𝛾 of mode 3 at the 𝑠-position.

mu3
The phase advance 𝜇 of mode 3 at the 𝑠-position.

13. TWISS MTABLE 125

__map
The damap at the 𝑠-position.Page 123, 7

The chrom attribute will add the following fields to the mtable header:
dq1

The chromatic derivative of tunes of mode 1, i.e. chromaticities.
dq2

The chromatic derivative of tunes of mode 2, i.e. chromaticities.
dq3

The chromatic derivative of tunes of mode 3, i.e. chromaticities.

The chrom attribute will add the following columns to the mtable:
dmu1

The chromatic derivative of the phase advance of mode 1 at the 𝑠-position.
ddx

The chromatic derivative of the dispersion function of 𝑥 at the 𝑠-position.
ddpx

The chromatic derivative of the dispersion function of 𝑝𝑥 at the 𝑠-position.
wx

The chromatic amplitude function of mode 1 at the 𝑠-position.
phix

The chromatic phase function of mode 1 at the 𝑠-position.
dmu2

The chromatic derivative of the phase advance of mode 2 at the 𝑠-position.
ddy

The chromatic derivative of the dispersion function of 𝑦 at the 𝑠-position.
ddpy

The chromatic derivative of the dispersion function of 𝑝𝑦 at the 𝑠-position.
wy

The chromatic amplitude function of mode 2 at the 𝑠-position.
phiy

The chromatic phase function of mode 2 at the 𝑠-position.

The coupling attribute will add the following columns to the mtable:
alfa12

The optical function 𝛼 of coupling mode 1-2 at the 𝑠-position.
beta12

The optical function 𝛽 of coupling mode 1-2 at the 𝑠-position.
gama12

The optical function 𝛾 of coupling mode 1-2 at the 𝑠-position.
alfa13

The optical function 𝛼 of coupling mode 1-3 at the 𝑠-position.
beta13

The optical function 𝛽 of coupling mode 1-3 at the 𝑠-position.

13. EXAMPLES 126

gama13
The optical function 𝛾 of coupling mode 1-3 at the 𝑠-position.

alfa21
The optical function 𝛼 of coupling mode 2-1 at the 𝑠-position.

beta21
The optical function 𝛽 of coupling mode 2-1 at the 𝑠-position.

gama21
The optical function 𝛾 of coupling mode 2-1 at the 𝑠-position.

alfa23
The optical function 𝛼 of coupling mode 2-3 at the 𝑠-position.

beta23
The optical function 𝛽 of coupling mode 2-3 at the 𝑠-position.

gama23
The optical function 𝛾 of coupling mode 2-3 at the 𝑠-position.

alfa31
The optical function 𝛼 of coupling mode 3-1 at the 𝑠-position.

beta31
The optical function 𝛽 of coupling mode 3-1 at the 𝑠-position.

gama31
The optical function 𝛾 of coupling mode 3-1 at the 𝑠-position.

alfa32
The optical function 𝛼 of coupling mode 3-2 at the 𝑠-position.

beta32
The optical function 𝛽 of coupling mode 3-2 at the 𝑠-position.

gama32
The optical function 𝛾 of coupling mode 3-2 at the 𝑠-position.

3 Tracking linear normal form

TODO

4 Examples

TODO

127

Chapter 14. Match

The match command provides a unified interface to several optimizer. It can be used to match optics para-
meters (its main purpose), to fit data sets with parametric functions in the least-squares sense, or to find local
or global minima of non-linear problems. Most local methods support bounds, equalities and inequalities
constraints. The least-squares methods are custom variant of the Newton-Raphson and the Gauss-Newton
algorithms implemented by the LSopt module. The local and global non-linear methods are relying on
the NLopt module, which interfaces the embedded NLopt library that implements a dozen of well-known
algorithms.

1 Command synopsis

The match command format is summarized in Listing 14.1. including the default setup of the attributes.

Listing 14.1: Synopsis of the match command with default setup.

status, fmin, ncall = match {
command = function or nil,
variables = { variables-attributes },

{ variable-attributes },
..., more variable definitions, ...
{ variable-attributes },

Equalities = { constraints-attributes},
{ constraint-attributes },
..., more equality definitions, ...
{ constraint-attributes },

inequalities = { constraints-attributes },
{ constraint-attributes },
..., more inequality definitions,...
{ constraint-attributes },

weights = { weights-list },
objective = { objective-attributes },
maxcall=nil, -- call limit
maxtime=nil, -- time limit
info=nil, -- information level (output on terminal)
debug=nil, -- debug information level (output on terminal)
usrdef=nil, -- user defined data attached to the environment

}

The match command supports the following attributes:
command

A callable (e) that will be invoked during the optimization process at each iteration. (default: nil).
Example: command := twiss { twiss-attributes }.

variables
An mappable of single variable specification that can be combined with a set of specifications for all

https://nlopt.readthedocs.io/en/latest/

14. COMMAND SYNOPSIS 128

variables. (no default, required).
Example: variables = {{ var="seq.knobs.mq_k1" }}.

equalities
An mappable of single equality specification that can be combined with a set of specifications for all
equalities. (default: {}).
Example: equalities = {{ expr=\t -> t.q1-64.295, name='q1' }}.

inequalities
An mappable of single inequality specification that can be combined with a set of specifications for
all inequalities. (default: {}).
Example: inequalities = {{ expr=\t -> t.mq4.beta11-50 }}.

weights
A mappable of weights specification that can be used in the kind attribute of the constraints specific-
ations. (default: {}).
Example: weights = { px=10 }.

objective
A mappable of specifications for the objective to minimize. (default: {}).
Example: objective = { method="LD_LMDIF", fmin=1e-10 }.

maxcall
A number specifying the maximum allowed calls of the command function or the objective function.
(default: nil).
Example: maxcall = 100.

maxtime
A number specifying the maximum allowed time in seconds. (default: nil).
Example: maxtime = 60.

info
A number specifying the information level to control the verbosity of the output on the console. (de-
fault: nil). Example: info = 3.

debug
A number specifying the debug level to perform extra assertions and to control the verbosity of the
output on the console. (default: nil).
Example: debug = 2.

usrdef
Any user defined data that will be attached to the matching environment, which is passed as extra
argument to all user defined functions in the match command. (default: nil).
Example: usrdef = { var=vector(15) }.

The match command returns the following values in this order:
status

A string corresponding to the status of the command or the stopping reason of the method. See Table
14.1 for the list of supported status.

fmin
A number corresponding to the best minimum reached during the optimization.

ncall

14. ENVIRONMENT 129

The number of calls of the command function or the objective function.

Table14.1: List of status (string) returned by the match command.

status Meaning
SUCCESS Generic success (NLopt only, unlikely).
FMIN fmin criteria is fulfilled by the objective function.
FTOL tol or rtol criteria are fulfilled by the objective function.
XTOL tol or rtol criteria are fulfilled by the variables step.
MAXCALL maxcall criteria is reached.
MAXTIME maxtime criteria is reached.
ROUNDOFF Round off limited iteration progress, results may still be useful.
STOPPED Termination forced by user, i.e. {env.stop = true}.
Errors
FAILURE Generic failure (NLopt only, unlikely).
INVALID_ARGS Invalid argument (NLopt only, unlikely).
OUT_OF_MEMORY Ran out of memory (NLopt only, unlikely).

2 Environment

The match command creates a matching environment, which is passed as argument to user’s functions in-
voked during an iteration. It contains some useful attributes that can be read or changed during the optimiz-
ation process (with care):
ncall

The current number of calls of the command and/or the objective functions.
dtime

A number reporting the current elapsed time.
stop

A logical stopping the match command immediately if set to true.
info

The current information level ≥ 0.
debug

The current debugging level ≥ 0.
usrdef

The usrdef attribute of the match command or nil.
command

The command attribute of the match command or nil.
variables

The variables attribute of the match command.
equalities

The equalities attribute of the match command or {}.
inequalities

The inequalities attribute of the match command or {}.

14. VARIABLES 130

weights
The weights attribute of the match command or {}.

3 Command

The attribute command (default: nil) must be a callable (e) that will be invoked with the matching envir-
onment as first argument during the optimization, right after the update of the variables to their new values,
and before the evaluation of the constraints and the objective function. (default: nil).

command = function or nil

The value returned by command is passed as the first argument to all constraints. If this return value is nil, the
match command considers the current iteration as invalid. Depending on the selected method, the optimizer
can start a new iteration or stop.

A typical command definition for matching optics is a function that calls a twiss command1 :

command := mchklost(twiss { twiss-attributes })

where the function mchklost surrounding the twiss command checks if the returned mtable (i.e. the twiss
table) has lost particles and returns nilinstead:

mchklost = \mt -> mt.lost == 0 and mt or nil

The function mchklost2 is useful to avoid that all constraints do the check individually.

4 Variables

The attribute variables (no default, required) defines the variables that the command match will update
while trying to minimize the objective function.

variables = { variables-attributes,
{ variable-attributes },
... ,more variable definitions, ...
{ variable-attributes } }

The variable-attributes is a set of attributes that specify a single variable:
var

A string specifying the identifier (and indirection) needed to reach the variable from the user’s scope
where the match command is defined. (default: nil).
Example: var = "lhcb1.mq_12l4_b1.k1".

name
A string specifying the name of the variable to display when the info level is positive. (default: var).
Example: name = "MQ.12L4.B1->k1".

1 Here, the function (i.e. the deferred expression) ignores the matching environment passed as first argument.
2 The function mchklost is provided by the GPhys module.

14. VARIABLES 131

min
A number specifying the lower bound for the variable. (default: -inf).
Example: min = -4.

max
A number specifying the upper bound for the variable. (default: +inf).
Example: max = 10.

sign
A logical enforcing the sign of the variable by moving min or max to zero depending on the sign of its
initial value. (default: false).
Example: sign = true.

slope
A number enforcing (LSopt methods only) with its sign the variation direction of the variable, i.e.
positive will only increase and negative will only decrease. (default: 0).
Example: slope = -1.

step
A small positive number used to approximate the derivatives using the Derivatives method. If the
value is not provided, the command will use some heuristic. (default: nil).
Example: step = 1e-6.

tol
A number specifying the tolerance on the variable step. If an update is smaller than tol, the command
will return the status "XTOL". (default: 0).
Example: tol = 1e-8.

get
A callable (e) returning the variable value as a number, optionally using the matching environment
passed as first argument. This attribute is required if the variable is local or an upvalue to avoid a
significant slowdown of the code. (default: nil).
Example: get := lhcb1.mq_12l4_b1.k1.

set
A callable (v, e) updating the variable value with the number passed as first argument, optionally
using the matching environment passed as second argument.This attribute is required if the variable is
local or an upvalue to avoid a significant slowdown of the code. (default: nil).
Example: set = \v,e => lhcb1.mqxa_1l5.k1 = v*e.usrdef.xon end.

The variables-attributes is a set of attributes that specify all variables together, but with a lower precedence
than the single variable specification of the same name unless otherwise specified:
min

Idem variable-attributes, but for all variables with no local override.
max

Idem variable-attributes, but for all variables with no local override.
sign

Idem variable-attributes, but for all variables with no local override.
slope

Idem variable-attributes, but for all variables with no local override.

14. CONSTRAINTS 132

step
Idem variable-attributes, but for all variables with no local override.

tol
Idem variable-attributes, but for all variables with no local override.

rtol
A number specifying the relative tolerance on all variable steps. If an update is smaller than rtol
relative to its variable value, the command will return the status "XTOL". (default: eps).
Example: tol = 1e-8.

nvar
A number specifying the number of variables of the problem. It is useful when the problem is made
abstract with functions and it is not possible to deduce this count from single variable definitions, or
one needs to override it. (default: nil). Example: nvar = 15.

get
A callable (x, e) updating a vector passed as first argument with the values of all variables, option-
ally using the matching environment passed as second argument. This attribute supersedes all single
variable get and may be useful when it is better to read all the variables together, or when they are all
locals or upvalues. (default: nil).
Example: get = \x,e -> e.usrdef.var:copy(x).

set
A callable (x, e) updating all the variables with the values passed as first argument in a vector,
optionally using the matching environment passed as second argument. This attribute supersedes all
single variable set and may be useful when it is better to update all the variables together, or when
they are all locals or upvalues.(default: nil).
Example: set = \x,e -> x:copy(e.usrdef.var).

nowarn
A logical disabling a warning emitted when the definition of get and set are advised but not defined.
It is safe to not define get and set in such case, but it will significantly slowdown the code. (default:
nil).
Example: nowarn = true.

5 Constraints

The attributes equalities (default: {}) and inequalities (default: {}) define the constraints that the
command match will try to satisfy while minimizing the objective function. Equalities and inequalities are
considered differently when calculating the penalty function.

equalities = { constraints-attributes,
{ constraint-attributes } ,
... more equality definitions ...
{ constraint-attributes } },

inequalities = { constraints-attributes,
{ constraint-attributes } ,
... more inequality definitions ...

(continues on next page)

14. CONSTRAINTS 133

(continued from previous page)

{ constraint-attributes } },

weights = { weights-list },

The constraint-attributes is a set of attributes that specify a single constraint, either an equality or an inequal-
ity:

expr
A callable (r, e) returning the constraint value as a number, optionally using the result
of command passed as first argument, and the matching environment passed as second
argument. (default: nil)
Example: expr = \t -> t.IP8.beta11-beta_ip8.

name
A string specifying the name of the constraint to display when the info level is positive.
(default: nil).
Example: name = "betx@IP8".

kind
A string specifying the kind to refer to for the weight of the constraint, taken either in the
user-defined or in the default weights-list. (default: nil).
Example: kind = "dq1".

weight
A number used to override the weight of the constraint. (default: nil).
Example: weight = 100.

tol
A number specifying the tolerance to apply on the constraint when checking for its fulfill-
ment. (default: 1e-8).
Example: tol = 1e-6.

The constraints-attributes is a set of attributes that specify all equalities or inequalities constraints together,
but with a lower precedence than the single constraint specification of the same name unless otherwise spe-
cified:

tol
Idem constraint-attributes, but for all constraints with no local override.

nequ
A number specifying the number of equations (i.e. number of equalities or inequalities)
of the problem. It is useful when the problem is made abstract with functions and it is not
possible to deduce this count from single constraint definitions, or one needs to override
it. (default: nil).
Example: nequ = 15.

exec
A callable (x, c, cjac) updating a vector passed as second argument with the values of
all constraints, and updating an optional matrix passed as third argument with the Jacobian
of all constraints (if not nil), using the variables values passed in a vector as first argument.
This attribute supersedes all constraints expr and may be useful when it is better to update
all the constraints together. (default: nil).

14. OBJECTIVE 134

Example: exec = myinequ, where (nvar=2 and nequ=2)

local function myinequ (x, c, cjac)
c:fill { 8*x[1]^3 - x[2] ; (1 - x[1])^3 - x[2] }
if cjac then -- fill [2x2] matrix if present

cjac:fill { 24*x[1]^2, - 1 ; - 3*(1 - x[1])^2, - 1 }
end

End

disp
A logical disabling the display of the equalities in the summary if it is explicitly set to false.
This is useful for fitting data where equalities are used to compute the residuals. (default: nil).
Example: disp = false.

The weights-list is a set of attributes that specify weights for kinds used by constraints. It allows to override
the default weights of the supported kinds summarized in Table 14.2, or to extend this list with new kinds
and weights. The default weight for any undefined kind is 1. Example: weights = { q1=100, q2=100,
mykind=3 }.

Table14.2: List of supported kinds (string) and their default weights
(number).

Name Weight Name Weight Name Weight Generic name
x 10 y 10 t 10
px 100 py 100 pt 100
dx 10 dy 10 dt 10 d
dpx 100 dpy 100 dpt 100 dp
ddx 10 ddy 10 ddt 10 dd
ddpx 100 ddpy 100 ddpt 100 ddp
wx 1 wy 1 wz 1 w
phix 1 phiy 1 phiz 1 phi
betx 1 bety 1 betz 1 beta
alfx 10 alfy 10 alfz 10 alfa
mux 10 muy 10 muz 10 mu
beta1 1 beta2 1 beta3 1 beta
alfa1 10 alfa2 10 alfa3 10 alfa
mu1 10 mu2 10 mu3 10 mu
q1 10 q2 10 q3 10 q
dq1 1 dq2 1 dq3 1 dq

14. OBJECTIVE 135

6 Objective

The attribute objective (default: {}) defines the objective that the command match will try to minimize.

objective = { objective-attributes },

The objective-attributes is a set of attributes that specify the objective to fulfill:
method

A string specifying the algorithm to use for solving the problem, see Table 14.3, Table 14.4
and Table 14.5. (default: "LN_COBYLA" if objective.exec is defined, "LD_JACOBIAN"
otherwise).
Example: method = "LD_LMDIF".

submethod
A string specifying the algorithm from NLopt module to use for solving the problem loc-
ally when the method is an augmented algorithm, see Table 14.4 and Table 14.5 (default:
"LN_COBYLA").
Example: method = "AUGLAG", submethod = "LD_SLSQP".

fmin
A number corresponding to the minimum to reach during the optimization. For least
squares problems, it corresponds to the tolerance on the penalty function. If an iteration
finds a value smaller than fmin and all the constraints are fulfilled, the command will
return the status "FMIN" . (default: nil).
Example: fmin = 1e-12.

tol
A number specifying the tolerance on the objective function step. If an update is smaller
than tol, the command will return the status "FTOL". (default: 0).
Example: tol = 1e-10.

rtol
A number specifying the relative tolerance on the objective function step. If an update is
smaller than rtol relative to its step value, the command will return the status "FTOL"
(default: 0).
Example: tol = 1e-8.

bstra
A number specifying the strategy to select the best case of the objective function. (default:
nil).
Example: bstra = 0.3

broyden
A logical allowing the Jacobian approximation by finite difference to update its columns
with a Broyden’s rank one estimates when the step of the corresponding variable is almost
collinear with the variables step vector. This option may save some expensive calls to
command, e.g. save Twiss calculations, when it does not degrade the rate of convergence
of the selected method. (default: nil).
Example: broyden = true.

3 MAD-X matching corresponds to bstra=0.

14. OBJECTIVE 136

reset
A logical specifying to the match command to restore the initial state of the variables
before returning. This is useful to attempt an optimization without changing the state
of the variables. Note that if any function amongst command, variables get and set,
constraints expr or exec, or objective exec have side effects on the environment, these
will be persistent. (default: nil).
Example: reset = true.

exec
A callable (x, fgrd) returning the value of the objective function as a number, and up-
dating a vector passed as second argument with its gradient, using the variables values
passed in a vector as first argument. (default: nil).
Example: exec = myfun, where (nvar=2)

local function myfun(x, fgrd)
if fgrd then -- fill [2x1] vector if present

fgrd:fill { 0, 0.5/sqrt(x[2]) }
end
return sqrt(x[2])

end

grad
A logical enabling (true) or disabling (false) the approximation by finite difference of
the gradient of the objective function or the Jacobian of the constraints. A nil value will
be converted to true if no exec function is defined and the selected method requires
derivatives (D), otherwise it will be converted to false. (default: nil).
Example: grad = false.

bisec
A number specifying (LSopt methods only) the maximum number of attempt to minimize
an increasing objective function by reducing the variables steps by half, i.e. that is a line
search using 𝛼 = 0.5𝑘 where 𝑘 = 0..bisec. (default: 3 if objective.exec is undefined,
0 otherwise).
Example: bisec = 9.

rcond
A number specifying (LSopt methods only) how to determine the effective rank of the Jac-
obian while solving the least squares system (see ssolve from the Linear Algebra module).
This attribute can be updated between iterations, e.g. through env.objective.rcond.
(default: eps).
Example: rcond = 1e-14.

jtol
A number specifying (LSopt methods only) the tolerance on the norm of the Jacobian rows
to reject useless constraints. This attribute can be updated between iterations, e.g. through
env.objective.jtol. (default: eps).
Example: tol = 1e-14.

14. ALGORITHMS 137

jiter
A number specifying (LSopt methods only) the maximum allowed attempts to solve the
least squares system when variables are rejected, e.g. wrong slope or out-of-bound values.
(default: 10).
Example: jiter = 15.

jstra
A number specifying (LSopt methods only) the strategy to use for reducing the variables
of the least squares system. (default: 1).
Example: jstra = 3.4

jstra Strategy for reducing variables of least squares system.
0 no variables reduction, constraints reduction is still active.
1 reduce system variables for bad slopes and out-of-bound values.
2 idem 1, but bad slopes reinitialize variables to their original state.
3 idem 2, but strategy switches definitely to 0 if jiter is reached.

7 Algorithms

The match command supports local and global optimization algorithms through the method attribute, as
well as combinations of them with the submethod attribute (see objective). The method should be selected
according to the kind of problem that will add a prefix to the method name: local (L) or global (G), with (D)
or without (N) derivatives, and least squares or nonlinear function minimization. When the method requires
the derivatives (D) and no objective.exec function is defined or the attribute grad is set to false, the
match command will approximate the derivatives, i.e. gradient and Jacobian, by the finite difference method
(see derivatives).

Most global optimization algorithms explore the variables domain with methods belonging to stochastic
sampling, deterministic scanning, and splitting strategies, or a mix of them. Hence, all global methods
require boundaries to define the searching region, which may or may not be internally scaled to a hypercube.
Some global methods allow to specify with the submethod attribute, the local method to use for searching
local minima. If this is not the case, it is wise to refine the global solution with a local method afterward,
as global methods put more effort on finding global solutions than precise local minima. The global (G)
optimization algorithms, with (D) or without (N) derivatives, are listed in Table 14.5.

Most local optimization algorithms with derivatives are variants of the Newton iterative method suitable
for finding local minima of nonlinear vector-valued function 𝑓(𝑥⃗), i.e. searching for stationary points. The
iteration steps ℎ⃗ are given by the minimization ℎ⃗ = −𝛼(∇2𝑓)−1∇𝑓 , coming from the local approximation of
the function at the point 𝑥⃗+ ℎ⃗ by its Taylor series truncated at second order 𝑓(𝑥⃗+ ℎ⃗) ≈ 𝑓(𝑥⃗)+ ℎ⃗𝑇∇𝑓(𝑥⃗)+
1
2 ℎ⃗

𝑇∇2𝑓(𝑥⃗)⃗ℎ, and solved for ∇
ℎ⃗
𝑓 = 0. The factor 𝛼 > 0 is part of the line search strategy , which is

sometimes replaced or combined with a trusted region strategy like in the Leverberg-Marquardt algorithm.
The local (L) optimization algorithms, with (D) or without (N) derivatives, are listed in Table 14.3 for least
squares methods and in Table 14.4 for non-linear methods, and can be grouped by family of algorithms:
Newton

An iterative method to solve nonlinear systems that uses iteration step given by the minimization ℎ⃗ =

4 MAD-X JACOBIAN with strategy=3 corresponds to jstra=3.

14. STOPPING CRITERIA 138

−𝛼(∇2𝑓)−1∇𝑓 .
Newton-Raphson

An iterative method to solve nonlinear systems that uses iteration step given by the minimization ℎ⃗ =
−𝛼(∇𝑓)−1𝑓 .

Gradient-Descent
An iterative method to solve nonlinear systems that uses iteration step given by ℎ⃗ = −𝛼∇𝑓 .

Quasi-Newton
A variant of the Newton method that uses BFGS approximation of the Hessian ∇2𝑓 or its inverse
(∇2𝑓)−1, based on values from past iterations.

Gauss-Newton
A variant of the Newton method for least-squares problems that uses iteration step given by the min-
imization ℎ⃗ = −𝛼(∇𝑓𝑇∇𝑓)−1(∇𝑓𝑇 𝑓), where the Hessian ∇2𝑓 is approximated by ∇𝑓𝑇∇𝑓 with
∇𝑓 being the Jacobian of the residuals 𝑓 .

Levenberg-Marquardt
A hybrid G-N and G-D method for least-squares problems that uses iteration step given by the minim-
ization ℎ⃗ = −𝛼(∇𝑓𝑇∇𝑓 + 𝜇𝐷⃗)−1(∇𝑓𝑇 𝑓), where mu>0 is the damping term selecting the method
G-N (small 𝜇) or G-D (large 𝜇), and 𝐷⃗ = diag(∇𝑓𝑇∇𝑓).

Simplex
A linear programming method (simplex method) working without using any derivatives.

Nelder-Mead
A nonlinear programming method (downhill simplex method) working without using any derivatives.

Principal-Axis
An adaptive coordinate descent method working without using any derivatives, selecting the descent
direction from the Principal Component Analysis.

7.1 Stopping criteria

The match command will stop the iteration of the algorithm and return one of the following status if the
corresponding criteria, checked in this order, is fulfilled (see also Table 14.1):

STOPPED
Check env.stop == true, i.e. termination forced by a user-defined function.

FMIN
Check 𝑓 ≤ 𝑓min if 𝑐fail = 0 or bstra == 0, where 𝑓 is the current value of the objective
function, and 𝑐fail is the number of failed constraints (i.e. feasible point).

FTOL
Check |Δ𝑓 | ≤ 𝑓tol or |Δ𝑓 | ≤ 𝑓rtol |𝑓 | if 𝑐fail = 0, where 𝑓 and Δ𝑓 are the current value
and step of the objective function, and 𝑐fail the number of failed constraints (i.e. feasible
point).

XTOL
Check max(|Δ𝑥⃗| − 𝑥⃗tol) ≤ 0 or max(|Δ𝑥⃗| − 𝑥⃗rtol ∘ |𝑥⃗|) ≤ 0, where 𝑥⃗ and Δ𝑥⃗ are the
current values and steps of the variables. Note that these criteria are checked even for non
feasible points, i.e. 𝑐fail > 0, as the algorithm can be trapped in a local minima that does
not satisfy the constraints.

14. DERIVATIVES 139

ROUNDOFF
Check max(|Δ𝑥⃗| − 𝜀 |𝑥⃗|) ≤ 0 if 𝑥⃗rtol < 𝜀, where 𝑥⃗ and Δ𝑥⃗ are the current values and
steps of the variables. The LSopt module returns also this status if the Jacobian is full of
zeros, which is jtol dependent during its jstra reductions.

MAXCALL
Check env.ncall >= maxcall if maxcall > 0.

MAXTIME
Check env.dtime >= maxtime if maxtime > 0.

7.2 Objective function

The objective function is the key point of the match command, specially when tolerances are applied to it or
to the constraints, or the best case strategy is changed. It is evaluated as follows:

1. Update user’s variables with the vector 𝑥⃗.
2. Evaluate the callable command if defined and pass its value to the constraints.
3. Evaluate the callable objective.exec if defined and save its value 𝑓 .
4. Evaluate the callable equalities.exec if defined, otherwise evaluate all the functions

equalities[].expr(cmd,env), and use the result to fill the vector 𝑐⃗=.
5. Evaluate the callable inequalities.exec if defined, otherwise evaluate all the functions

inequalities[].expr(cmd,env) and use the result to fill the vector 𝑐⃗≤.
6. Count the number of invalid constraints 𝑐fail = card{|⃗𝑐=| > 𝑐⃗=tol}+ card{𝑐⃗≤ > 𝑐⃗≤tol}.
7. Calculate the penalty 𝑝 = ‖𝑐⃗‖/‖𝑤⃗‖, where 𝑐⃗ = 𝑤⃗∘

[︀
𝑐⃗=

𝑐⃗≤

]︀
and 𝑤⃗ is the weights vector of the constraints.

Set 𝑓 = 𝑝 if the callable objective.exec is undefined.5

8. Save the current iteration state as the best state depending on the strategy bstra. The default
bstra=nil corresponds to the last strategy

bstra Strategy for selecting the best case of the objective function.
0 𝑓 < 𝑓best

min , no feasible point check.
1 𝑐fail ≤ 𝑐best

fail and 𝑓 < 𝑓best
min , improve both feasible point and objective.

- 𝑐fail < 𝑐best
fail or 𝑐fail = 𝑐best

fail and 𝑓 < 𝑓best
min , improve feasible point or objective.

7.3 Derivatives

The derivatives are approximated by the finite difference methods when the selected algorithm requires them
(D) and the function objective.exec is undefined or the attribute grad=false. The difficulty of the finite
difference methods is to choose the small step ℎ for the difference. The match command uses the forward
difference method with a step ℎ = 10−4 ‖ℎ⃗‖, where ℎ⃗ is the last iteration steps, unless it is overridden by the
user with the variable attribute step. In order to avoid zero step size, which would be problematic for the

5 The LSopt module sets the values of valid inequalities to zero, i.e. 𝑐⃗≤ = 0 if 𝑐⃗≤ ≤ 𝑐⃗≤tol.

sec.match.lsopt

14. MATCH COMMAND OUTPUT 140

calculation of the Jacobian, the choice of ℎ is a bit more subtle:

𝜕𝑓𝑗
𝜕𝑥𝑖

≈ 𝑓𝑗(𝑥⃗+ ℎ𝑒𝑖)− 𝑓𝑗(𝑥⃗)

ℎ
; ℎ =

⎧⎪⎨⎪⎩
10−4 ‖ℎ⃗‖ if ‖ℎ⃗‖ ≠ 0

10−8 ‖𝑥⃗‖ if ‖ℎ⃗‖ = 0 and ‖𝑥⃗‖ ≠ 0

10−10 otherwise.

Hence the approximation of the Jacobian will need an extra evaluation of the objective function per variable.
If this evaluation has an heavy cost, e.g. like a twiss command, it is possible to approximate the Jacobian
evolution by a Broyden’s rank-1 update with the broyden attribute:

𝐽𝑘+1 = 𝐽𝑘 +
𝑓(𝑥⃗𝑘 + ℎ⃗𝑘)− 𝑓(𝑥⃗𝑘)− 𝐽𝑘 ℎ⃗𝑘

‖ℎ⃗𝑘‖2
ℎ⃗𝑇𝑘

The update of the 𝑖-th column of the Jacobian by the Broyden approximation makes sense if the angle between
ℎ⃗ and 𝑒⃗𝑖 is small, that is when |⃗ℎ𝑇 𝑒⃗𝑖| ≥ 𝛾 ‖ℎ⃗‖. The match command uses a rather pessimistic choice of
𝛾 = 0.8, which gives good performance. Nevertheless, it is advised to always check if Broyden’s update
saves evaluations of the objective function for your study.

8 Console output

The verbosity of the output of the match command on the console (e.g. terminal) is controlled by the info
level, where the level info=0 means a completely silent command as usual. The first verbose level info=1
displays the final summary at the end of the matching, as shown in Listing 14.2 and the next level info=2 adds
intermediate summary for each evaluation of the objective function, as shown in Listing 14.3. The columns
of these tables are self-explanatory, and the sign > on the right of the constraints marks those failing.

The bottom line of the intermediate summary displays in order:

– the number of evaluation of the objective function so far,
– the elapsed time in second (in square brackets) so far,
– the current objective function value,
– the current objective function step,
– the current number of constraint that failed 𝑐fail.

The bottom line of the final summary displays the same information but for the best case found, as well as the
final status returned by the match command. The number in square brackets right after fbst is the evaluation
number of the best case.

The LSopt module adds the sign # to mark the adjusted variables and the sign * to mark the rejected variables
and constraints on the right of the intermediate summary tables to qualify the behavior of the constraints and
the variables during the optimization process. If these signs appear in the final summary too, it means that
they were always adjusted or rejected during the matching, which is useful to tune your study e.g. by removing
the useless constraints.

14. MATCH COMMAND OUTPUT 141

8.1 Match command output

Listing 14.2: Match command summary output (info=1).

Constraints Type Kind Weight Penalty Value

1 IP8 equality beta 1 9.41469e-14
2 IP8 equality beta 1 3.19744e-14
3 IP8 equality alfa 10 0.00000e+00
4 IP8 equality alfa 10 1.22125e-14
5 IP8 equality dx 10 5.91628e-14
6 IP8 equality dpx 100 1.26076e-13
7 E.DS.R8.B1 equality beta 1 7.41881e-10
8 E.DS.R8.B1 equality beta 1 1.00158e-09
9 E.DS.R8.B1 equality alfa 10 4.40514e-12
10 E.DS.R8.B1 equality alfa 10 2.23532e-11
11 E.DS.R8.B1 equality dx 10 7.08333e-12
12 E.DS.R8.B1 equality dpx 100 2.12877e-13
13 E.DS.R8.B1 equality mu1 10 2.09610e-12
14 E.DS.R8.B1 equality mu2 10 1.71063e-12

Variables Final Value Init. Value Lower Limit Upper Limit
--
1 kq4.l8b1 -3.35728e-03 -4.31524e-03 -8.56571e-03 0.00000e+00
2 kq5.l8b1 4.93618e-03 5.28621e-03 0.00000e+00 8.56571e-03
3 kq6.l8b1 -5.10313e-03 -5.10286e-03 -8.56571e-03 0.00000e+00
4 kq7.l8b1 8.05555e-03 8.25168e-03 0.00000e+00 8.56571e-03
5 kq8.l8b1 -7.51668e-03 -5.85528e-03 -8.56571e-03 0.00000e+00
6 kq9.l8b1 7.44662e-03 7.07113e-03 0.00000e+00 8.56571e-03
7 kq10.l8b1 -6.73001e-03 -6.39311e-03 -8.56571e-03 0.00000e+00
8 kqtl11.l8b1 6.85635e-04 7.07398e-04 0.00000e+00 5.56771e-03
9 kqt12.l8b1 -2.38722e-03 -3.08650e-03 -5.56771e-03 0.00000e+00
10 kqt13.l8b1 5.55969e-03 3.78543e-03 0.00000e+00 5.56771e-03
11 kq4.r8b1 4.23719e-03 4.39728e-03 0.00000e+00 8.56571e-03
12 kq5.r8b1 -5.02348e-03 -4.21383e-03 -8.56571e-03 0.00000e+00
13 kq6.r8b1 4.18341e-03 4.05914e-03 0.00000e+00 8.56571e-03
14 kq7.r8b1 -5.48774e-03 -6.65981e-03 -8.56571e-03 0.00000e+00
15 kq8.r8b1 5.88978e-03 6.92571e-03 0.00000e+00 8.56571e-03
16 kq9.r8b1 -3.95756e-03 -7.46154e-03 -8.56571e-03 0.00000e+00
17 kq10.r8b1 7.18012e-03 7.55573e-03 0.00000e+00 8.56571e-03
18 kqtl11.r8b1 -3.99902e-03 -4.78966e-03 -5.56771e-03 0.00000e+00
19 kqt12.r8b1 -1.95221e-05 -1.74210e-03 -5.56771e-03 0.00000e+00
20 kqt13.r8b1 -2.04425e-03 -3.61438e-03 -5.56771e-03 0.00000e+00

ncall=381 [4.1s], fbst[381]=8.80207e-12, fstp=-3.13047e-08, status=FMIN.

14. MODULES 142

Listing 14.3: Match command intermediate output (info=2).

Constraints Type Kind Weight Penalty Value

1 IP8 equality beta 1 3.10118e+00 >
2 IP8 equality beta 1 1.85265e+00 >
3 IP8 equality alfa 10 9.77591e-01 >
4 IP8 equality alfa 10 8.71014e-01 >
5 IP8 equality dx 10 4.37803e-02 >
6 IP8 equality dpx 100 4.59590e-03 >
7 E.DS.R8.B1 equality beta 1 9.32093e+01 >
8 E.DS.R8.B1 equality beta 1 7.60213e+01 >
9 E.DS.R8.B1 equality alfa 10 2.98722e+00 >
10 E.DS.R8.B1 equality alfa 10 1.04758e+00 >
11 E.DS.R8.B1 equality dx 10 7.37813e-02 >
12 E.DS.R8.B1 equality dpx 100 6.67388e-03 >
13 E.DS.R8.B1 equality mu1 10 7.91579e-02 >
14 E.DS.R8.B1 equality mu2 10 6.61916e-02 >

Variables Curr. Value Curr. Step Lower Limit Upper Limit
--
1 kq4.l8b1 -3.36997e-03 -4.81424e-04 -8.56571e-03 0.00000e+00 #
2 kq5.l8b1 4.44028e-03 5.87400e-04 0.00000e+00 8.56571e-03
3 kq6.l8b1 -4.60121e-03 -6.57316e-04 -8.56571e-03 0.00000e+00 #
4 kq7.l8b1 7.42273e-03 7.88826e-04 0.00000e+00 8.56571e-03
5 kq8.l8b1 -7.39347e-03 0.00000e+00 -8.56571e-03 0.00000e+00 *
6 kq9.l8b1 7.09770e-03 2.58912e-04 0.00000e+00 8.56571e-03
7 kq10.l8b1 -5.96101e-03 -8.51573e-04 -8.56571e-03 0.00000e+00 #
8 kqtl11.l8b1 6.15659e-04 8.79512e-05 0.00000e+00 5.56771e-03 #
9 kqt12.l8b1 -2.66538e-03 0.00000e+00 -5.56771e-03 0.00000e+00 *
10 kqt13.l8b1 4.68776e-03 0.00000e+00 0.00000e+00 5.56771e-03 *
11 kq4.r8b1 4.67515e-03 -5.55795e-04 0.00000e+00 8.56571e-03 #
12 kq5.r8b1 -4.71987e-03 5.49407e-04 -8.56571e-03 0.00000e+00 #
13 kq6.r8b1 4.68747e-03 -5.54035e-04 0.00000e+00 8.56571e-03 #
14 kq7.r8b1 -5.35315e-03 4.58938e-04 -8.56571e-03 0.00000e+00 #
15 kq8.r8b1 5.77068e-03 0.00000e+00 0.00000e+00 8.56571e-03 *
16 kq9.r8b1 -4.97761e-03 -7.11087e-04 -8.56571e-03 0.00000e+00 #
17 kq10.r8b1 6.90543e-03 4.33052e-04 0.00000e+00 8.56571e-03
18 kqtl11.r8b1 -4.16758e-03 -5.95369e-04 -5.56771e-03 0.00000e+00 #
19 kqt12.r8b1 -1.57183e-03 0.00000e+00 -5.56771e-03 0.00000e+00 *
20 kqt13.r8b1 -2.57565e-03 0.00000e+00 -5.56771e-03 0.00000e+00 *

ncall=211 [2.3s], fval=8.67502e-01, fstp=-2.79653e+00, ccnt=14.

14. NLOPT 143

9 Modules

The match command can be extended easily with new optimizer either from external libraries or internal
module, or both. The interface should be flexible and extensible enough to support new algorithms and new
options with a minimal effort.

9.1 LSopt

The LSopt (Least Squares optimization) module implements custom variant of the Newton-Raphson and the
Levenberg-Marquardt algorithms to solve least squares problems. Both support the options rcond, bisec,
jtol, jiter and jstra described in the section objective, with the same default values. Table 14.3 lists
the names of the algorithms for the attribute method. These algorithms cannot be used with the attribute
submethod for the augmented algorithms of the NLopt module, which would not make sense as these meth-
ods support both equalities and inequalities.

Table14.3: List of supported least squares methods (LSopt).

method Equ Iqu Description
LD_JACOBIAN y y Modified Newton-Raphson algorithm.
LD_LMDIF y y Modified Levenberg-Marquardt algorithm.

9.2 NLopt

The NLopt (Non-Linear optimization) module provides a simple interface to the algorithms implemented in
the embedded NLopt library. Table 14.4 and Table 14.5 list the names of the local and global algorithms
respectively for the attribute method. The methods that do not support equalities (column Equ) or inequalities
(column Iqu) can still be used with constraints by specifying them as the submethod of the AUGmented
LAGrangian method. For details about these algorithms, please refer to the Algorithms section of its online
documentation.

https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest
https://nlopt.readthedocs.io/en/latest

14. NLOPT 144

Table14.4: List of non-linear local methods (NLopt)

method Equ Iqu Description
Local optimizers without derivative (LN_)
LN_BOBYQA n n Bound-constrained Optimization BY Quadratic Approx-

imations algorithm.
LN_COBYLA y y Bound Constrained Optimization BY Linear Approxim-

ations algorithm.
LN_NELDERMEAD n n Original Nelder-Mead algorithm.
LN_NEWUOA n n Older and less efficient LN_BOBYQA.
LN_NEWUOA_BOUND n n Older and less efficient LN_BOBYQA with bound con-

straints.
LN_PRAXIS n n PRincipal-AXIS algorithm.
LN_SBPLX n n Subplex algorithm, variant of Nelder-Mead.
Local optimizers with derivative (LD_)
LD_CCSAQ n y Conservative Convex Separable Approximation with

Quatratic penalty.
LD_LBFGS n n BFGS algorithm with low memory footprint.
LD_LBFGS_NOCEDAL n n Variant from J. Nocedal of LD_LBFGS.
LD_MMA n y Method of Moving Asymptotes algorithm.
LD_SLSQP y y Sequential Least-Squares Quadratic Programming al-

gorithm.
LD_TNEWTON n n Inexact Truncated Newton algorithm.
LD_TNEWTON_PRECOND n n Idem LD_TNEWTON with preconditioning.
LD_TNEWTON_PRECOND_RESTARTn n Idem LD_TNEWTON with preconditioning and steepest-

descent restarting.
LD_TNEWTON_RESTART n n Idem LD_TNEWTON with steepest-descent restarting.
LD_VAR1 n n Shifted limited-memory VARiable-metric rank-1 al-

gorithm.
LD_VAR2 n n Shifted limited-memory VARiable-metric rank-2 al-

gorithm.

14. MATCHING TUNES AND CHROMATICITY 145

Table14.5: List of supported non-linear global methods (NLopt).

method Equ Iqu Description
Global optimizers without derivative (GN_)
GN_CRS2_LM n n Variant of the Controlled Random Search algorithm with Local Muta-

tion (mixed stochastic and genetic method).
GN_DIRECT n n DIviding RECTangles algorithm (deterministic method).
GN_DIRECT_L n n Idem GN_DIRECT with locally biased optimization.
GN_DIRECT_L_RANDn n Idem GN_DIRECT_L with some randomization in the selection of the

dimension to reduce next.
GN_DIRECT*_NOSCALn n Variants of above GN_DIRECT* without scaling the problem to a unit

hypercube to preserve dimension weights.
GN_ESCH n n Modified Evolutionary algorithm (genetic method).
GN_ISRES y y Improved Stochastic Ranking Evolution Strategy algorithm (mixed ge-

netic and variational method).
GN_MLSL n n Multi-Level Single-Linkage algorithm (stochastic method).
GN_MLSL_LDS n n Idem GN_MLSL with low-discrepancy scan sequence.
Global optimizers with derivative (GD_)
GD_MLSL n n Multi-Level Single-Linkage algorithm (stochastic method).
GD_MLSL_LDS n n Idem GL_MLSL with low-discrepancy scan sequence.
GD_STOGO n n Branch-and-bound algorithm (deterministic method).
GD_STOGO_RANDn n Variant of GD_STOGO (deterministic and stochastic method).
AUGLAG y y Augmented Lagrangian algorithm, combines objective function and

nonlinear constraints into a single “penalty” function.
AUGLAG_EQ y n Idem AUGLAG but handles only equality constraints and pass inequality

constraints to submethod.
G_MLSL n n MLSL with user-specified local algorithm using submethod.
G_MLSL_LDS n n Idem G_MLSL with low-discrepancy scan sequence.

10 Examples

10.1 Matching tunes and chromaticity

The following example below shows how to match the betatron tunes of the LHC beam 1 to 𝑞1 = 64.295 and
𝑞2 = 59.301 using the quadrupoles strengths kqtf and kqtd, followed by the matching of the chromaticities
to 𝑑𝑞1 = 15 and 𝑑𝑞2 = 15 using the main sextupole strengths ksf and ksd.

local lhcb1 in MADX
local twiss, match in MAD

local status, fmin, ncall = match {
command := twiss { sequence=lhcb1, cofind=true,

method=4, observe=1 },
variables = { rtol=1e-6, -- 1 ppm

(continues on next page)

14. MATCHING INTERACTION POINT 146

(continued from previous page)

{ var='MADX.kqtf_b1' },
{ var='MADX.kqtd_b1' }},

equalities = {{ expr=\t -> t.q1- 64.295, name='q1' },
{ expr=\t -> t.q2- 59.301, name='q2' }},

objective = { fmin=1e-10, broyden=true },
maxcall=100, info=2

}
local status, fmin, ncall = match {
command := twiss { sequence=lhcb1, cofind=true, chrom=true,

method=4, observe=1 },
variables = { rtol=1e-6, -- 1 ppm

{ var='MADX.ksf_b1' },
{ var='MADX.ksd_b1' }},

equalities = {{ expr= \t -> t.dq1-15, name='dq1' },
{ expr= \t -> t.dq2-15, name='dq2' }},

objective = { fmin=1e-8, broyden=true },
maxcall=100, info=2

}

10.2 Matching interaction point

The following example hereafter shows how to squeeze the beam 1 of the LHC to 𝛽* = betaip8 × 0.62 at
the IP8 while enforcing the required constraints at the interaction point and the final dispersion suppressor
(i.e. at makers "IP8" and "E.DS.R8.B1") in two iterations, using the 20 quadrupoles strengths from kq4
to kqt13 on left and right sides of the IP. The boundary conditions are specified by the beta0 blocks bir8b1
for the initial conditions and eir8b1 for the final conditions. The final summary and an instance of the
intermediate summary of this match example are shown in Listing 14.2 and Match command intermediate
output (info=2)..

local SS, ES = "S.DS.L8.B1", "E.DS.R8.B1"
lhcb1.range = SS.."/"..ES
for n=1,2 do

beta_ip8 = beta_ip8*0.6
local status, fmin, ncall = match {

command := twiss { sequence=lhcb1, X0=bir8b1, method=4,␣
→˓observe=1 },

variables = { sign=true, rtol=1e-8, -- 20 variables
{ var='MADX.kq4_l8b1', name='kq4.l8b1', min=-lim2, max=lim2 },
{ var='MADX.kq5_l8b1', name='kq5.l8b1', min=-lim2, max=lim2 },
{ var='MADX.kq6_l8b1', name='kq6.l8b1', min=-lim2, max=lim2 },
{ var='MADX.kq7_l8b1', name='kq7.l8b1', min=-lim2, max=lim2 },
{ var='MADX.kq8_l8b1', name='kq8.l8b1', min=-lim2, max=lim2 },
{ var='MADX.kq9_l8b1', name='kq9.l8b1', min=-lim2, max=lim2 },
{ var='MADX.kq10_l8b1', name='kq10.l8b1', min=-lim2, max=lim2 },

(continues on next page)

14. FITTING DATA 147

(continued from previous page)

{ var='MADX.kqtl11_l8b1', name='kqtl11.l8b1', min=-lim3,␣
→˓max=lim3 },

{ var='MADX.kqt12_l8b1', name='kqt12.l8b1' , min=-lim3,␣
→˓max=lim3 },

{ var='MADX.kqt13_l8b1', name='kqt13.l8b1', min=-lim3, max=lim3␣
→˓},

{ var='MADX.kq4_r8b1', name='kq4.r8b1', min=-lim2, max=lim2 },
{ var='MADX.kq5_r8b1', name='kq5.r8b1', min=-lim2, max=lim2 },
{ var='MADX.kq6_r8b1', name='kq6.r8b1', min=-lim2, max=lim2 },
{ var='MADX.kq7_r8b1', name='kq7.r8b1', min=-lim2, max=lim2 },
{ var='MADX.kq8_r8b1', name='kq8.r8b1', min=-lim2, max=lim2 },
{ var='MADX.kq9_r8b1', name='kq9.r8b1', min=-lim2, max=lim2 },
{ var='MADX.kq10_r8b1', name='kq10.r8b1', min=-lim2, max=lim2 },
{ var='MADX.kqtl11_r8b1', name='kqtl11.r8b1', min=-lim3,␣

→˓max=lim3 },
{ var='MADX.kqt12_r8b1', name='kqt12.r8b1', min=-lim3, max=lim3␣

→˓},
{ var='MADX.kqt13_r8b1', name='kqt13.r8b1', min=-lim3, max=lim3␣

→˓},
},
equalities = { -- 14 equalities
{ expr=\t -> t.IP8.beta11-beta_ip8, kind='beta', name='IP8' },
{ expr=\t -> t.IP8.beta22-beta_ip8, kind='beta', name='IP8' },
{ expr=\t -> t.IP8.alfa11, kind='alfa', name='IP8' },
{ expr=\t -> t.IP8.alfa22, kind='alfa', name='IP8' },
{ expr=\t -> t.IP8.dx, kind='dx', name='IP8' },
{ expr=\t -> t.IP8.dpx, kind='dpx', name='IP8' },
{ expr=\t -> t[ES].beta11-eir8b1.beta11, kind='beta', name=ES },
{ expr=\t -> t[ES].beta22-eir8b1.beta22, kind='beta', name=ES },
{ expr=\t -> t[ES].alfa11-eir8b1.alfa11, kind='alfa', name=ES },
{ expr=\t -> t[ES].alfa22-eir8b1.alfa22, kind='alfa', name=ES },
{ expr=\t -> t[ES].dx-eir8b1.dx, kind='dx', name=ES },
{ expr=\t -> t[ES].dpx-eir8b1.dpx, kind='dpx', name=ES },
{ expr=\t -> t[ES].mu1-muxip8, kind='mu1', name=ES },
{ expr=\t -> t[ES].mu2-muyip8, kind='mu2', name=ES },
},
objective = { fmin=1e-10, broyden=true },
maxcall=1000, info=2

}
MADX.n, MADX.tar = n, fmin

end

14. FITTING DATA 148

10.3 Fitting data

The following example shows how to fit data with a non-linear model using the least squares methods. The
“measurements” are generated by the data function:

𝑑(𝑥) = 𝑎 sin(𝑥𝑓1) cos(𝑥𝑓2), with 𝑎 = 5, 𝑓1 = 3, 𝑓2 = 7, and 𝑥 ∈ [0, 𝜋).

The least squares minimization is performed by the small code below starting from the arbitrary values 𝑎 = 1,
𝑓1 = 1, and 𝑓2 = 1. The 'LD_JACOBIAN' methods finds the values 𝑎 = 5 ± 10−10, 𝑓1 = 3 ± 10−11, and
𝑓2 = 7±10−11 in 2574 iterations and 0.1,s. The 'LD_LMDIF'method finds similar values in 2539 iterations.
The data and the model are plotted in the Fig. 14.1.

Figure14.1: Fitting data using the Jacobian or Levenberg-Marquardt methods.}

local n, k, a, f1, f2 = 1000, pi/1000, 5, 3, 7
local d = vector(n):seq():map \i -> a*sin(i*k*f1)*cos(i*k*f2) -- data
if noise then d=d:map \x -> x+randtn(noise) end -- add noise if any
local m, p = vector(n), { a=1, f1=1, f2=1 } -- model parameters
local status, fmin, ncall = match {

command := m:seq():map \i -> p.a*sin(i*k*p.f1)*cos(i*k*p.f2),
variables = { { var='p.a' },

{ var='p.f1' },
{ var='p.f2' }, min=1, max=10 },

equalities = { { expr=\m -> ((d-m):norm()) } },
objective = { fmin=1e-9, bisec=noise and 5 },
maxcall=3000, info=1

}

14. FITTING DATA WITH DERIVATIVES 149

The same least squares minimization can be achieved on noisy data by adding a gaussian RNG truncated
at 2𝜎 to the data generator, i.e.~:literal:noise=2, and by increasing the attribute bisec=5. Of course, the
penalty tolerance fmin must be moved to variables tolerance tol or rtol. The 'LD_JACOBIAN' methods
finds the values 𝑎 = 4.98470, 𝑓1 = 3.00369, and 𝑓2 = 6.99932 in 704 iterations (404 for 'LD_LMDIF').
The data and the model are plotted in Fig. 14.2.

Figure14.2: Fitting data with noise using Jacobian or Levenberg-Marquardt methods.

10.4 Fitting data with derivatives

The following example shows how to fit data with a non-linear model and its derivatives using the least
squares methods. The least squares minimization is performed by the small code below starting from the
arbitrary values 𝑣 = 0.9 and 𝑘 = 0.2. The 'LD_JACOBIAN'methods finds the values 𝑣 = 0.362±10−3 and
𝑘 = 0.556± 10−3 in 6 iterations. The 'LD_LMDIF'method finds similar values in 6 iterations too. The data
(points) and the model (curve) are plotted in the Fig. 14.3, where the latter has been smoothed using cubic
splines.

local x = vector{0.038, 0.194, 0.425, 0.626 , 1.253 , 2.500 , 3.740 }
local y = vector{0.050, 0.127, 0.094, 0.2122, 0.2729, 0.2665, 0.3317}
local p = { v=0.9, k=0.2 }
local n = #x
local function eqfun (_, r, jac)

local v, k in p
for i=1,n do

r[i] = y[i] - v*x[i]/(k+x[i])
jac[2*i-1] = -x[i]/(k+x[i])

(continues on next page)

14. MINIMIZING FUNCTION 150

Figure14.3: Fitting data with derivatives using the Jacobian or Levenberg-Marquardt methods.

(continued from previous page)

jac[2*i] = v*x[i]/(k+x[i])^2
end

end
local status, fmin, ncall = match {

variables = { tol=5e-3, min=0.1, max=2,
{ var='p.v' },
{ var='p.k' } },

equalities = { nequ=n, exec=eqfun, disp=false },
maxcall=20

10.5 Minimizing function

The following example6 hereafter shows how to find the minimum of the function:

min
𝑥⃗∈R2

√
𝑥2, subject to the constraints

⎧⎪⎨⎪⎩
𝑥2 ≥ 0,

𝑥2 ≥ (𝑎1𝑥1 + 𝑏1)
3,

𝑥2 ≥ (𝑎2𝑥1 + 𝑏2)
3,

for the parameters 𝑎1 = 2, 𝑏1 = 0, 𝑎2 = −1 and 𝑏2 = 1. The minimum of the function is 𝑓min =
√︁

8
27 at

the point 𝑥⃗ = (13 ,
8
27), and found by the method LD_MMA in 11 evaluations for a relative tolerance of 10−4 on

the variables, starting at the arbitrary point 𝑥⃗0 = (1.234, 5.678).
6 This example is taken from the NLopt documentation.

https://nlopt.readthedocs.io/en/latest/NLopt_Tutorial

14. MINIMIZING FUNCTION 151

local function testFuncFn (x, grd)
if grd then x:fill{ 0, 0.5/sqrt(x[2]) } end
return sqrt(x[2])

end
local function testFuncLe (x, r, jac)

if jac then jac:fill{ 24*x[1]^2, -1, -3*(1-x[1])^2, -1 } end
r:fill{ 8*x[1]^3-x[2], (1-x[1])^3-x[2] }

end
local x = vector{1.234, 5.678} -- start point
local status, fmin, ncall = match {

variables = { rtol=1e-4,
{ var='x[1]', min=-inf },
{ var='x[2]', min=0 } },

inequalities = { exec=testFuncLe, nequ=2, tol=1e-8 },
objective = { exec=testFuncFn, method='LD_MMA' },
maxcall=100, info=2

}

This example can also be solved with least squares methods, where the LD_JACOBIAN method finds the
minimum in 8 iterations with a precision of ±10−16, and the LD_LMDIF method finds the minimum in 10
iterations with a precision of ±10−11.

152

Chapter 15. Correct

The correct command (i.e. orbit correction) provides a simple interface to compute the orbit steering
correction and setup the kickers of the sequences from the analysis of their track and twiss mtables.

Listing 15.1: Synopsis of the correct command with default setup.

mlst = correct {
sequence=nil, -- sequence(s) (required)
range=nil, -- sequence(s) range(s) (or sequence.range)
title=nil, -- title of mtable (default seq.name)
model=nil, -- mtable(s) with twiss functions (required)
orbit=nil, -- mtable(s) with measured orbit(s), or use model
target=nil, -- mtable(s) with target orbit(s), or zero orbit
kind='ring', -- 'line' or 'ring'
plane='xy', -- 'x', 'y' or 'xy'
method='micado',-- 'LSQ', 'SVD' or 'MICADO'
ncor=0, -- number of correctors to consider by method, 0=all
tol=1e-5, -- rms tolerance on the orbit
units=1, -- units in [m] of the orbit
corcnd=false, -- precond of correctors using 'svdcnd' or 'pcacnd'
corcut=0, -- value to theshold singular values in precond
cortol=0, -- value to theshold correctors in svdcnd
corset=true, -- update correctors correction strengths
monon=false, -- fraction (0<?<=1) of randomly available monitors
moncut=false, -- cut monitors above moncut sigmas
monerr=false, -- 1:use mrex and mrey alignment errors of monitors

-- 2:use msex and msey scaling errors of monitors
info=nil, -- information level (output on terminal)
debug=nil, -- debug information level (output on terminal)

}

1 Command synopsis

The correct command format is summarized in Listing 15.1, including the default setup of the attributes.
The correct command supports the following attributes:

sequence
The sequence (or a list of sequence) to analyze. (no default, required).
Example: sequence = lhcb1.

range
A range (or a list of range) specifying the span of the sequence to analyze. If no range
is provided, the command looks for a range attached to the sequence, i.e. the attribute
seq.range. (default: nil).
Example: range = "S.DS.L8.B1/E.DS.R8.B1".

title

15. COMMAND SYNOPSIS 153

A string specifying the title of the mtable. If no title is provided, the command looks for
the name of the sequence, i.e. the attribute seq.name. (default: nil).
Example: title = "Correct orbit around IP5".

model
A mtable (or a list of mtable) providing twiss-like information, e.g. elements, orbits and
optical functions, of the corresponding sequences. (no default, required).
Example: model = twmtbl.

orbit
A mtable (or a list of mtable) providing track-like information, e.g. elements and meas-
ured orbits, of the corresponding sequences. If this attribute is nil, the model orbit is
used. (default: nil).
Example: orbit = tkmtbl.

target
A mtable (or a list of mtable) providing track-like information, e.g. elements and target
orbits, of the corresponding sequences. If this attribute is nil, the design orbit is used.
(default: nil).
Example: target = tgmtbl.

kind
A string specifying the kind of correction to apply among line or ring. The kind line
takes care of the causality between monitors, correctors and sequences directions, while
the kind ring considers the system as periodic. (default: 'ring').
Example: kind = 'line'.

plane
A string specifying the plane to correct among x, , y and xy. (default: 'xy').
Example: plane = 'x'.

method
A string specifying the method to use for correcting the orbit among LSQ, SVD or micado.
These methods correspond to the solver used from the linear algebra module to find the
orbit correction, namely solve, ssolve or nsolve. (default: 'micado').
Example: method = 'svd'.

ncor
A number specifying the number of correctors to consider with the method micado, zero
meaning all available correctors. (default: 0).
Example: ncor = 4.

tol
A number specifying the rms tolerance on the residuals for the orbit correction. (default:
1e-6).
Example: tol = 1e-6.

unit
A number specifying the unit of the orbit and target coordinates. (default: 1 [m]).
Example: units = 1e-3 [m], i.e. [mm].

corcnd
A logical or a string specifying the method to use among svdcnd and pcacnd from the

15. CORRECT MTABLE 154

linear algebra module for the preconditioning of the system. A true value corresponds
to . (default: false).
Example: corcnd = 'pcacnd'.

corcut
A number specifying the thresholds for the singular values to pass to the svdcnd and
pcacnd method for the preconditioning of the system. (default: 0).
Example: cortol = 1e-6.

cortol
A number specifying the thresholds for the correctors to pass to the svdcnd method for
the preconditioning of the system. (default: 0).
Example: cortol = 1e-8.

corset
A logical specifying to update the correctors strengths for the corrected orbit. (default:
true).
Example: corset = false.

monon
A number specifying a fraction of available monitors selected from a uniform RNG. (de-
fault: false).
Example: monon = 0.8, keep 80% of the monitors.

moncut
A number specifying a threshold in number of sigma to cut monitor considered as outliers.
(default: false).
Example: moncut = 2, cut monitors above 2𝜎.

monerr
A number in 0..3 specifying the type of monitor reading errors to consider: 1 use scaling
errors msex and msey, 2 use alignment errors mrex, mrey and dpsi, 3 use both. (default:
false).
Example: monerr = 3.

info
A number specifying the information level to control the verbosity of the output on the
console. (default: nil).
Example: info = 2.

debug
A numberspecifying the debug level to perform extra assertions and to control the verbosity
of the output on the console. (default: nil).
Example: debug = 2.

The correct command returns the following object:
mlst

A mtable (or a list of mtable) corresponding to the TFS table of the correct command.
It is a list when multiple sequences are corrected together.

15. CORRECT MTABLE 155

2 Correct mtable

The correct command returns a mtable where the information described hereafter is the default list of fields
written to the TFS files.1

The header of the mtable contains the fields in the default order:
name

The name of the command that created the mtable, e.g. "correct".
type

The type of the mtable, i.e. "correct".
title

The value of the command attribute title.
origin

The origin of the application that created the mtable, e.g. "MAD 1.0.0 OSX 64".
date

The date of the creation of the mtable, e.g. "27/05/20".
time

The time of the creation of the mtable, e.g. "19:18:36".
refcol

The reference column for the mtable dictionnary, e.g. "name".
range

The value of the command attribute range.2

__seq
The sequence from the command attribute sequence.3 .. _ref.track.mtbl1}:

The core of the mtable contains the columns in the default order:
name

The name of the element.
kind

The kind of the element.
s

The 𝑠-position at the end of the element slice.
l

The length from the start of the element to the end of the element slice.
x_old

The local coordinate 𝑥 at the 𝑠-position before correction.
y_old

The local coordinate 𝑦 at the 𝑠-position before correction.
x

The predicted local coordinate 𝑥 at the 𝑠-position after correction.
y

1 The output of mtable in TFS files can be fully customized by the user.
2 This field is not saved in the TFS table by default.
3 Fields and columns starting with two underscores are protected data and never saved to TFS files.label{ref:track:mtbl1

15. EXAMPLES 156

The predicted local coordinate 𝑦 at the 𝑠-position after correction.
rx

The predicted local residual 𝑟𝑥 at the 𝑠-position after correction.
ry

The predicted local residual 𝑟𝑦 at the 𝑠-position after correction.
hkick_old

The local horizontal kick at the 𝑠-position before correction.
vkick_old

The local vertical kick at the 𝑠-position before correction.
hkick

The predicted local horizontal kick at the 𝑠-position after correction.
vkick

The predicted local vertical kick at the 𝑠-position after correction.
shared

A logical indicating if the element is shared with another sequence.
eidx

The index of the element in the sequence.

Note that correct does not take into account the particles and damaps ids present in the (augmented) track
mtable, hence the provided tables should contain single particle or damap information.

3 Examples

157

Chapter 16. Emit

This command is not yet implemented in MAD. It will probably be implemented as a layer on top of the
Twiss and Match commands.

158

Chapter 17. Plot

The plot command provides a simple interface to the Gnuplot application. The Gnuplot release 5.2 or higher
must be installed and visible in the user PATH by MAD to be able to run this command.

1 Command synopsis

Listing 17.1: Synopsis of the plot command with default setup.

cmd = plot {
sid = 1, -- stream id 1 <= n <= 25 (Gnuplot␣

→˓instances)
data = nil, -- { x=tbl.x, y=vec } (precedence over table)
table = nil, -- mtable
tablerange = nil, -- mtable range (default table.range)
sequence = nil, -- seq | { seq1, seq2, ...,} | "keep"
range = nil, -- sequence range (default sequence.range)
name = nil, -- (default table.title)
date = nil, -- (default table.date)
time = nil, -- (default table.time)
output = nil, -- "filename" -> pdf | number -> wid
scrdump = nil, -- "filename"
survey-attributes,
windows-attributes,
layout-attributes,
labels-attributes,
axis-attributes,
ranges-attributes,
data-attributes,
plots-attributes,
custom-attributes,
info =nil, -- information level (output on terminal)
debug =nil, -- debug information level (output on terminal)

}

The plot command format is summarized in Listing 17.1, including the default setup of the attributes. The
plot command supports the following attributes:

info
A number specifying the information level to control the verbosity of the output on the
console. (default: nil). Example: info = 2.

debug
A number specifying the debug level to perform extra assertions and to control the verb-
osity of the output on the console. (default: nil). Example: debug = 2.

The plot command returns itself.

http://www.gnuplot.info

159

Part III

PHYSICS

160

Chapter 18. Introduction

1 Local reference system

Figure18.1: Local Reference System

2 Global reference system

18. GLOBAL REFERENCE SYSTEM 161

Figure18.2: Global Reference System showing the global Cartesian system (𝑋,𝑌, 𝑍) in black and the local reference
system (𝑥, 𝑦, 𝑠) in red after translation (𝑋𝑖, 𝑌𝑖, 𝑍𝑖) and rotation (𝜃𝑖, 𝜑𝑖, 𝜓𝑖). The projections of the local reference
system axes onto the horizontal 𝑍𝑋 plane of the Cartesian system are figured with blue dashed lines. The intersections
of planes 𝑦𝑠, 𝑥𝑦 and 𝑥𝑠 of the local reference system with the horizontal 𝑍𝑋 plane of the Cartesian system are figured
in green dashed lines.

162

Chapter 19. Geometric Maps

163

Chapter 20. Dynamic Maps

164

Chapter 21. Integrators

165

Chapter 22. Orbit

1 Closed Orbit

166

Chapter 23. Optics

167

Chapter 24. Normal Forms

168

Chapter 25. Misalignments

169

Chapter 26. Aperture

170

Chapter 27. Radiation

171

Part IV

MODULES

172

Chapter 28. Types

This chapter describes some types identification and concepts setup defined by the module MAD.typeid and
MAD._C (C API). The module typeid is extended by types from other modules on load like e.g. is_range,
is_complex, is_matrix, is_tpsa, etc. . .

1 Typeids

All the functions listed hereafter return only true or false when identifying types.

1.1 Primitive Types

The following table shows the functions for identifying the primitive type of LuaJIT, i.e. using type(a) ==
'the_type'

Functions Return true if a
is_nil(a) is a nil
is_boolean(a) is a boolean
is_number(a) is a number
is_string(a) is a string
is_function(a) is a function
is_table(a) is a table
is_userdata(a) is a userdata
is_coroutine(a) is a thread1

is_cdata(a) is a cdata

1.2 Extended Types

The following table shows the functions for identifying the extended types, which are primitive types with
some extensions, specializations or value ranges.

1 The Lua “threads” are user-level non-preemptive threads also named coroutines.

28. CONCEPTS 173

Functions Return true if a
is_nan(a) is nan (Not a Number)
is_true(a) is true
is_false(a) is false
is_logical(a) is a boolean or nil
is_finite(a) is a number with |𝑎| <∞
is_infinite(a) is a number with |𝑎| = ∞
is_positive(a) is a number with 𝑎 > 0
is_negative(a) is a number with 𝑎 < 0
is_zpositive(a) is a number with 𝑎 ≥ 0
is_znegative(a) is a number with 𝑎 ≤ 0
is_nonzero(a) is a number with 𝑎 ̸= 0
is_integer(a) is a number with −252 ≤ 𝑎 ≤ 252 and no fractional part
is_int32(a) is a number with −231 ≤ 𝑎 < 231 and no fractional part
is_natural(a) is an integer with 𝑎 ≥ 0
is_even(a) is an even integer
is_odd(a) is an odd integer
is_decimal(a) is not an integer
is_emptystring(a) is a string with #a == 0
is_identifier(a) is a string with valid identifier characters, i.e. %s*[_%a][_%w]*%s*
is_rawtable(a) is a table with no metatable
is_emptytable(a) is a table with no element
is_file(a) is a userdata with io.type(a) ~= nil
is_openfile(a) is a userdata with io.type(a) == 'file'
is_closedfile(a) is a userdata with io.type(a) == 'closed file'
is_emptyfile(a) is an open file with some content

2 Concepts

Concepts are an extention of types looking at their behavior. The concepts are more based on supported
metamethods (or methods) than on the types themself and their valid range of values.

28. CONCEPTS 174

Functions Return true if a
is_value(a) is a nil, a boolean, a number or a string
is_reference(a) is not a value
is_empty(a) is a mappable and 1st iteration returns nil
is_lengthable(a) supports operation #a
is_iterable(a) supports operation ipairs(a)
is_mappable(a) supports operation pairs(a)
is_indexable(a) supports operation a[?]
is_extendable(a) supports operation a[]=?
is_callable(a) supports operation a()
is_equalable(a) supports operation a == ?
is_orderable(a) supports operation a < ?
is_concatenable(a) supports operation a .. ?
is_negatable(a) supports operation -a
is_addable(a) supports operation a + ?
is_subtractable(a) supports operation a - ?
is_multipliable(a) supports operation a * ?
is_dividable(a) supports operation a / ?
is_modulable(a) supports operation a % ?
is_powerable(a) supports operation a ^ ?
is_copiable(a) supports metamethod __copy()
is_sameable(a) supports metamethod __same()
is_tablable(a) supports metamethod __totable()
is_stringable(a) supports metamethod __tostring()
is_mutable(a) defines metamethod __metatable()
is_restricted(a) has metamethods for restriction, see wrestrict()
is_protected(a) has metamethods for protection, see wprotect()
is_deferred(a) has metamethods for deferred expressions, see deferred()
is_same(a,b) has the same type and metatable as b

The functions in the following table are complementary to concepts and usually used to prevent an error
during concepts checks.

Functions Return true if
has_member(a,b) a[b] is not nil
has_method(a,f) a[f] is a callable
has_metamethod(a,f) metamethod f is defined
has_metatable(a) a has a metatable

is_metaname(a)
Returns true if the string a is a valid metamethod name, false otherwise.

get_metatable(a)
Returns the metatable of a even if a is a cdata, which is not the case of getmetatable().

28. SETTING CONCEPTS 175

get_metamethod(a, f)
Returns the metamethod (or method) f of a even if a is a cdata and f is only reachable through the
metatable, or nil.

2.1 Setting Concepts

typeid.concept

The table concept contains the lists of concepts that can be passed to the function set_concept to
prevent the use of their associated metamethods. The concepts can be combined together by adding
them, e.g. not_comparable = not_equalable + not_orderable.

Concepts Associated metamethods
not_lengthable __len
not_iterable __ipairs
not_mappable __ipairs and __pairs
not_scannable __len, __ipairs and __pairs
not_indexable __index
not_extendable __newindex
not_callable __call
not_equalable __eq
not_orderable __lt and __le
not_comparable __eq, __lt and __le
not_concatenable __concat
not_copiable __copy and __same
not_tablable __totable
not_stringable __tostring
not_mutable __metatable and __newindex
not_negatable __unm
not_addable __add
not_subtractable __sub
not_additive __add and __sub
not_multipliable __mul
not_dividable __div
not_multiplicative __mul and __div
not_modulable __mod
not_powerable __pow

set_concept(mt, concepts, strict_)
Return the metatable mt after setting the metamethods associated to the combination of concepts
set in concepts to prevent their use. The concepts can be combined together by adding them,
e.g. not_comparable = not_equalable + not_orderable. Metamethods can be overridden
if strict = false, otherwise the overload is silently discarded. If concepts requires iterable but
not mappable then pairs is equivalent to ipairs.

28. C API 176

wrestrict(a)
Return a proxy for a which behaves like a, except that it prevents existing indexes from being modified
while allowing new ones to be created, i.e. a is extendable.

wprotect(a)
Return a proxy for a which behaves like a, except that it prevents existing indexes from being modified
and does not allow new ones to be created, i.e. a is readonly.

wunprotect(a)
Return a from the proxy, i.e. expect a restricted or a protected a.

deferred(a)
Return a proxy for a which behaves like a except that elements of type function will be considered as
deferred expressions and evaluated on read, i.e. returning their results in their stead.

3 C Type Sizes

The following table lists the constants holding the size of the C types used by common cdata like complex,
matrices or TPSA. See section on C API for the description for those C types.

C types sizes C types
ctsz_log log_t
ctsz_idx idx_t
ctsz_ssz ssz_t
ctsz_dbl num_t
ctsz_cpx cpx_t
ctsz_str str_t
ctsz_ptr ptr_t

4 C API

type log_t
The logical type aliasing _Bool, i.e. boolean, that holds TRUE or FALSE.

type idx_t
The index type aliasing int32_t, i.e. signed 32-bit integer, that holds signed indexes in the range
[−231, 231 − 1].

type ssz_t
The size type aliasing int32_t, i.e. signed 32-bit integer, that holds signed sizes in the range [−231, 231−
1].

type num_t
The number type aliasing double, i.e. double precision 64-bit floating point numbers, that
holds double-precision normalized number in IEC 60559 in the approximative range {−∞} ∪

28. C API 177

[−huge,−tiny] ∪ {0} ∪ [tiny, huge] ∪ {∞} where huge ≈ 10308 and tiny ≈ 10−308. See MAD.
constant.huge and MAD.constant.tiny for precise values.

type cpx_t
The complex type aliasing double _Complex, i.e. two double precision 64-bit floating point numbers,
that holds double-precision normalized number in IEC 60559.

type str_t
The string type aliasing const char*, i.e. pointer to a readonly null-terminated array of characters.

type ptr_t
The pointer type aliasing const void*, i.e. pointer to readonly memory of unknown/any type.

178

Chapter 29. Constants

This chapter describes some constants uniquely defined as macros in the C header mad_cst.h and available
from modules MAD.constant and MAD._C (C API) as floating point double precision variables.

1 Numerical Constants

These numerical constants are provided by the system libraries. Note that the constant huge differs from
math.huge, which corresponds in fact to inf.

MAD constants C macros C constants Values
eps DBL_EPSILON mad_cst_EPS Smallest representable step near one
tiny DBL_MIN mad_cst_TINY Smallest representable number
huge DBL_MAX mad_cst_HUGE Largest representable number
inf INFINITY mad_cst_INF Positive infinity, 1/0
nan NAN mad_cst_NAN Canonical NaN1, 0/0

2 Mathematical Constants

This section describes some mathematical constants uniquely defined as macros in the C header mad_cst.h
and available from C and MAD modules as floating point double precision variables. If these mathematical
constants are already provided by the system libraries, they will be used instead of their local definitions.

1 Canonical NaN bit patterns may differ between MAD and C for the mantissa, but both should exibit the same behavior.

29. PHYSICAL CONSTANTS 179

MAD constants C macros C constants Values
e M_E mad_cst_E 𝑒
log2e M_LOG2E mad_cst_LOG2E log2(𝑒)
log10e M_LOG10E mad_cst_LOG10E log10(𝑒)
ln2 M_LN2 mad_cst_LN2 ln(2)
ln10 M_LN10 mad_cst_LN10 ln(10)
lnpi M_LNPI mad_cst_LNPI ln(𝜋)
pi M_PI mad_cst_PI 𝜋
twopi M_2PI mad_cst_2PI 2𝜋
pi_2 M_PI_2 mad_cst_PI_2 𝜋/2
pi_4 M_PI_4 mad_cst_PI_4 𝜋/4
one_pi M_1_PI mad_cst_1_PI 1/𝜋
two_pi M_2_PI mad_cst_2_PI 2/𝜋

sqrt2 M_SQRT2 mad_cst_SQRT2
√
2

sqrt3 M_SQRT3 mad_cst_SQRT3
√
3

sqrtpi M_SQRTPI mad_cst_SQRTPI
√
𝜋

sqrt1_2 M_SQRT1_2 mad_cst_SQRT1_2
√︀
1/2

sqrt1_3 M_SQRT1_3 mad_cst_SQRT1_3
√︀
1/3

one_sqrtpi M_1_SQRTPI mad_cst_1_SQRTPI 1/
√
𝜋

two_sqrtpi M_2_SQRTPI mad_cst_2_SQRTPI 2/
√
𝜋

rad2deg M_RAD2DEG mad_cst_RAD2DEG 180/𝜋
deg2rad M_DEG2RAD mad_cst_DEG2RAD 𝜋/180

3 Physical Constants

This section describes some physical constants uniquely defined as macros in the C header mad_cst.h and
available from C and MAD modules as floating point double precision variables.

MAD constants C macros C constants Values
minlen P_MINLEN mad_cst_MINLEN Min length tolerance, default 10−10 in [m]
minang P_MINANG mad_cst_MINANG Min angle tolerance, default 10−10 in [1/m]
minstr P_MINSTR mad_cst_MINSTR Min strength tolerance, default 10−10 in [rad]

The following table lists some physical constants from the CODATA 2018 sheet.

https://physics.nist.gov/cuu/pdf/wall_2018.pdf

29. PHYSICAL CONSTANTS 180

MAD constants C macros C constants Values
clight P_CLIGHT mad_cst_CLIGHT Speed of light, 𝑐 in [m/s]
mu0 P_MU0 mad_cst_MU0 Permeability of vacuum, 𝜇0 in [T.m/A]
epsilon0 P_EPSILON0 mad_cst_EPSILON0 Permittivity of vacuum, 𝜖0 in [F/m]
qelect P_QELECT mad_cst_QELECT Elementary electric charge, 𝑒 in [C]
hbar P_HBAR mad_cst_HBAR Reduced Plack’s constant, ℏ in [GeV.s]
amass P_AMASS mad_cst_AMASS Unified atomic mass, 𝑚𝑢 𝑐

2 in [GeV]
emass P_EMASS mad_cst_EMASS Electron mass, 𝑚𝑒 𝑐

2 in [GeV]
pmass P_PMASS mad_cst_PMASS Proton mass, 𝑚𝑝 𝑐

2 in [GeV]
nmass P_NMASS mad_cst_NMASS Neutron mass, 𝑚𝑛 𝑐

2 in [GeV]
mumass P_MUMASS mad_cst_MUMASS Muon mass, 𝑚𝜇 𝑐

2 in [GeV]
deumass P_DEUMASS mad_cst_DEUMASS Deuteron mass, 𝑚𝑑 𝑐

2 in [GeV]
eradius P_ERADIUS mad_cst_ERADIUS Classical electron radius, 𝑟𝑒 in [m]
alphaem P_ALPHAEM mad_cst_ALPHAEM Fine-structure constant, 𝛼

181

Chapter 30. Functions

This chapter describes some functions provided by the modules MAD.gmath and MAD.gfunc.

The module gmath extends the standard LUA module math with generic functions working on any types that
support the methods with the same names. For example, the code gmath.sin(a) will call math.sin(a)
if a is a number, otherwise it will call the method a:sin(), i.e. delegate the invocation to a. This is how
MAD-NG handles several types like numbers, complex number and TPSA within a single polymorphic code
that expects scalar-like behavior.

The module gfunc provides useful functions to help dealing with operators as functions and to manipulate
functions in a functional way1.

1 Mathematical Functions

1.1 Generic Real-like Functions

Real-like generic functions forward the call to the method of the same name from the first argument when
the latter is not a number. The optional argument r_ represents a destination placeholder for results with
reference semantic, i.e. avoiding memory allocation, which is ignored by results with value semantic. The
C functions column lists the C implementation used when the argument is a number and the implementation
does not rely on the standard math module but on functions provided with MAD-NG or by the standard math
library described in the C Programming Language Standard [ISOC99].

Functions Return values C functions
abs(x,r_) |𝑥|
acos(x,r_) cos−1 𝑥
acosh(x,r_) cosh−1 𝑥 acosh()
acot(x,r_) cot−1 𝑥
acoth(x,r_) coth−1 𝑥 atanh()
asin(x,r_) sin−1 𝑥

asinc(x,r_) sin−1 𝑥
𝑥 mad_num_asinc()

asinh(x,r_) sinh−1 𝑥 asinh()

asinhc(x,r_) sinh−1 𝑥
𝑥 mad_num_asinhc()

atan(x,r_) tan−1 𝑥
atan2(x,y,r_) tan−1 𝑥

𝑦

atanh(x,r_) tanh−1 𝑥 atanh()
ceil(x,r_) ⌈𝑥⌉
cos(x,r_) cos𝑥
cosh(x,r_) cosh𝑥
cot(x,r_) cot𝑥

continues on next page

1 For true Functional Programming, see the module MAD.lfun, a binding of the LuaFun library adapted to the ecosystem of
MAD-NG.

https://en.wikipedia.org/wiki/Functional_programming
https://github.com/luafun/luafun

30. GENERIC COMPLEX-LIKE FUNCTIONS 182

Table 30.1 – continued from previous page
Functions Return values C functions
coth(x,r_) coth𝑥
exp(x,r_) exp𝑥
floor(x,r_) ⌊𝑥⌋
frac(x,r_) 𝑥− trunc(𝑥)

hypot(x,y,r_)
√︀
𝑥2 + 𝑦2 hypot()

hypot3(x,y,z,r_)
√︀
𝑥2 + 𝑦2 + 𝑧2 hypot()

inv(x,v_,r_)2 𝑣
𝑥

invsqrt(x,v_,r_)Page 182, 2 𝑣√
𝑥

lgamma(x,tol_,r_) ln |Γ(𝑥)| lgamma()
log(x,r_) log 𝑥
log10(x,r_) log10 𝑥
powi(x,n,r_) 𝑥𝑛 mad_num_powi()
round(x,r_) ⌊𝑥⌉ round()
sign(x) −1, 0 or 1 mad_num_sign()3

sign1(x) −1 or 1 mad_num_sign1()3

sin(x,r_) sin𝑥

sinc(x,r_) sin𝑥
𝑥 mad_num_sinc()

sinh(x,r_) sinh𝑥

sinhc(x,r_) sinh𝑥
𝑥 mad_num_sinhc()

sqrt(x,r_)
√
𝑥

tan(x,r_) tan𝑥
tanh(x,r_) tanh𝑥
tgamma(x,tol_,r_) Γ(𝑥) tgamma()
trunc(x,r_) ⌊𝑥⌋, 𝑥 ≥ 0; ⌈𝑥⌉, 𝑥 < 0
unit(x,r_) 𝑥

|𝑥|

1.2 Generic Complex-like Functions

Complex-like generic functions forward the call to the method of the same name from the first argument
when the latter is not a number, otherwise it implements a real-like compatibility layer using the equivalent
representation 𝑧 = 𝑥 + 0𝑖. The optional argument r_ represents a destination for results with reference
semantic, i.e. avoiding memory allocation, which is ignored by results with value semantic.

2 Default: v_ = 1.
3 Sign and sign1 functions take care of special cases like ±0, ±inf and ±NaN.

30. GENERIC ERROR-LIKE FUNCTIONS 183

Functions Return values
cabs(z,r_) |𝑧|
carg(z,r_) arg 𝑧
conj(z,r_) 𝑧*

cplx(x,y,r_) 𝑥+ 𝑖 𝑦
fabs(z,r_) |ℜ(𝑧)|+ 𝑖 |ℑ(𝑧)|
imag(z,r_) ℑ(𝑧)
polar(z,r_) |𝑧| 𝑒𝑖 arg 𝑧
proj(z,r_) proj(𝑧)
real(z,r_) ℜ(𝑧)
rect(z,r_) ℜ(𝑧) cosℑ(𝑧) + 𝑖ℜ(𝑧) sinℑ(𝑧)
reim(z,re_,im_) ℜ(𝑧),ℑ(𝑧)

1.3 Generic Vector-like Functions

Vector-like functions (also known as MapFold or MapReduce) are functions useful when used as high-order
functions passed to methods like :map2(), :foldl() (fold left) or :foldr() (fold right) of containers like
lists, vectors and matrices.

Functions Return values
sumsqr(x,y) 𝑥2 + 𝑦2

sumabs(x,y) |𝑥|+ |𝑦|
minabs(x,y) min(|𝑥|, |𝑦|)
maxabs(x,y) max(|𝑥|, |𝑦|)
sumsqrl(x,y) 𝑥+ 𝑦2

sumabsl(x,y) 𝑥+ |𝑦|
minabsl(x,y) min(𝑥, |𝑦|)
maxabsl(x,y) max(𝑥, |𝑦|)
sumsqrr(x,y) 𝑥2 + 𝑦
sumabsr(x,y) |𝑥|+ 𝑦
minabsr(x,y) min(|𝑥|, 𝑦)
maxabsr(x,y) max(|𝑥|, 𝑦)

1.4 Generic Error-like Functions

Error-like generic functions forward the call to the method of the same name from the first argument when
the latter is not a number, otherwise it calls C wrappers to the corresponding functions from the Faddeeva
library from the MIT (see mad_num.c). The optional argument r_ represents a destination for results with
reference semantic, i.e. avoiding memory allocation, which is ignored by results with value semantic.

http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package

30. OPERATORS AS FUNCTIONS 184

Functions Return values C functions

erf(z,rtol_,r_) 2√
𝜋

∫︀ 𝑧
0 𝑒

−𝑡2𝑑𝑡 mad_num_erf()

erfc(z,rtol_,r_) 1− erf(𝑧) mad_num_erfc()
erfi(z,rtol_,r_) −𝑖 erf(𝑖𝑧) mad_num_erfi()

erfcx(z,rtol_,r_) 𝑒𝑧
2
erfc(𝑧) mad_num_erfcx()

wf(z,rtol_,r_) 𝑒−𝑧2 erfc(−𝑖𝑧) mad_num_wf()

dawson(z,rtol_,r_) −𝑖
√
𝜋

2 𝑒−𝑧2 erf(𝑖𝑧) mad_num_dawson()

1.5 Special Functions

The special function fact() supports negative integers as input as it uses extended factorial definition, and
the values are cached to make its complexity in 𝑂(1) after warmup.

The special function rangle() adjust the angle a versus the previous right angle r, e.g. during phase advance
accumulation, to ensure proper value when passing through the ±2𝑘𝜋 boundaries.

Functions Return values C functions
fact(n) 𝑛! mad_num_fact()
rangle(a,r) 𝑎+ 2𝜋⌊ 𝑟−𝑎

2𝜋 ⌉ round()

1.6 Functions for Circular Sector

Basic functions for arc and cord lengths conversion rely on the following elementary relations:

𝑙arc = 𝑎𝑟 =
𝑙cord
sinc 𝑎

2

𝑙cord = 2𝑟 sin
𝑎

2
= 𝑙arc sinc

𝑎

2

where 𝑟 stands for the radius and 𝑎 for the angle of the Circular Sector.

Functions Return values
arc2cord(l,a) 𝑙arc sinc

𝑎
2

arc2len(l,a) 𝑙arc sinc
𝑎
2 cos 𝑎

cord2arc(l,a) 𝑙cord
sinc 𝑎

2

cord2len(l,a) 𝑙cord cos 𝑎

len2arc(l,a) 𝑙
sinc 𝑎

2
𝑐𝑜𝑠𝑎

len2cord(l,a) 𝑙
cos 𝑎

https://en.wikipedia.org/wiki/Circular_sector

30. LOGICAL OPERATORS 185

2 Operators as Functions

The module MAD.gfunc provides many functions that are named version of operators and useful when op-
erators cannot be used directly, e.g. when passed as argument or to compose together. These functions can
also be retrieved from the module MAD.gfunc.opstr by their associated string (if available).

2.1 Math Operators

Functions for math operators are wrappers to associated mathematical operators, which themselves can be
overridden by their associated metamethods.

Functions Return values Operator string Metamethods
unm(x) −𝑥 "~" __unm(x,_)
inv(x) 1/𝑥 "1/" __div(1,x)
sqr(x) 𝑥 · 𝑥 "^2" __mul(x,x)
add(x,y) 𝑥+ 𝑦 "+" __add(x,y)
sub(x,y) 𝑥− 𝑦 "-" __sub(x,y)
mul(x,y) 𝑥 · 𝑦 "*" __mul(x,y)
div(x,y) 𝑥/𝑦 "/" __div(x,y)
mod(x,y) 𝑥 mod 𝑦 "%" __mod(x,y)
pow(x,y) 𝑥𝑦 "^" __pow(x,y)

2.2 Element Operators

Functions for element-wise operators4 are wrappers to associated mathematical operators of vector-like ob-
jects, which themselves can be overridden by their associated metamethods.

Functions Return values Operator string Metamethods
emul(x,y,r_) 𝑥 . * 𝑦 ".*" __emul(x,y,r_)
ediv(x,y,r_) 𝑥 ./ 𝑦 "./" __ediv(x,y,r_)
emod(x,y,r_) 𝑥 .% 𝑦 ".%" __emod(x,y,r_)
epow(x,y,r_) 𝑥 .̂ 𝑦 ".^" __epow(x,y,r_)

4 Element-wise operators are not available directly in the programming language, here we use the Matlab-like notation for con-
venience.

30. BITWISE FUNCTIONS 186

2.3 Logical Operators

Functions for logical operators are wrappers to associated logical operators.

Functions Return values Operator string
lfalse() true "T"
ltrue() false "F"
lnot(x) ¬𝑥 "!"
lbool(x) ¬¬𝑥 "!!"
land(x,y) 𝑥 ∧ 𝑦 "&&"
lor(x,y) 𝑥 ∨ 𝑦 "||"
lnum(x) ¬𝑥→ 0, ¬¬𝑥→ 1 "!#"

2.4 Relational Operators

Functions for relational operators are wrappers to associated logical operators, which themselves can be
overridden by their associated metamethods. Relational ordering operators are available only for objects that
are ordered.

Functions Return values Operator string Metamethods
eq(x,y) 𝑥 = 𝑦 "==" __eq(x,y)
ne(x,y) 𝑥 ̸= 𝑦 "!=" or "~=" __eq(x,y)
lt(x,y) 𝑥 < 𝑦 "<" __lt(x,y)
le(x,y) 𝑥 ≤ 𝑦 "<=" __le(x,y)
gt(x,y) 𝑥 > 𝑦 ">" __le(y,x)
ge(x,y) 𝑥 ≥ 𝑦 ">=" __lt(y,x)
cmp(x,y) (𝑥 > 𝑦)− (𝑥 < 𝑦) "?="

The special relational operator cmp() returns the number 1 for 𝑥 < 𝑦, -1 for 𝑥 > 𝑦, and 0 otherwise.

2.5 Object Operators

Functions for object operators are wrappers to associated object operators, which themselves can be overrid-
den by their associated metamethods.

Functions Return values Operator string Metamethods
get(x,k) 𝑥[𝑘] "->" __index(x,k)
set(x,k,v) 𝑥[𝑘] = 𝑣 "<-" __newindex(x,k,v)
len(x) #𝑥 "#" __len(x)
cat(x,y) 𝑥..𝑦 ".." __concat(x,y)
call(x,...) 𝑥(...) "()" __call(x,...)

30. SPECIAL FUNCTIONS 187

3 Bitwise Functions

Functions for bitwise operations are those from the LuaJIT module bit and imported into the module MAD.
gfunc for convenience, see http://bitop.luajit.org/api.html for details. Note that all these functions have value
semantic and normalise their arguments to the numeric range of a 32 bit integer before use.

Functions Return values
tobit(x) Return the normalized value of x to the range of a 32 bit integer
tohex(x,n_) Return the hex string of x with n digits (𝑛 < 0 use caps)
bnot(x) Return the bitwise reverse of x bits
band(x,...) Return the bitwise AND of all arguments
bor(x,...) Return the bitwise OR of all arguments
bxor(x,...) Return the bitwise XOR of all arguments
lshift(x,n) Return the bitwise left shift of x by n bits with 0-bit shift-in
rshift(x,n) Return the bitwise right shift of x by n bits with 0-bit shift-in
arshift(x,n) Return the bitwise right shift of x by n bits with sign bit shift-in
rol(x,n) Return the bitwise left rotation of x by n bits
ror(x,n) Return the bitwise right rotation of x by n bits
bswap(x) Return the swapped bytes of x, i.e. convert big endian to/from little endian

3.1 Flags Functions

A flag is 32 bit unsigned integer used to store up to 32 binary states with the convention that 0 means
disabled/cleared and 1means enabled/set. Functions on flags are useful aliases to, or combination of, bitwise
operations to manipulate their states (i.e. their bits). Flags are mainly used by the object model to keep track
of hidden and user-defined states in a compact and efficient format.

Functions Return values
bset(x,n) Return the flag x with state n enabled
bclr(x,n) Return the flag x with state n disabled
btst(x,n) Return true if state n is enabled in x, false otherwise
fbit(n) Return a flag with only state n enabled
fnot(x) Return the flag x with all states flipped
fset(x,...) Return the flag x with disabled states flipped if enabled in any flag passed as argument
fcut(x,...) Return the flag x with enabled states flipped if disabled in any flag passed as argument
fclr(x,f) Return the flag x with enabled states flipped if enabled in f
ftst(x,f) Return true if all states enabled in f are enabled in x, false otherwise
fall(x) Return true if all states are enabled in x, false otherwise
fany(x) Return true if any state is enabled in x, false otherwise

http://bitop.luajit.org/api.html

30. C API 188

4 Special Functions

The module MAD.gfunc provides some useful functions when passed as argument or composed with other
functions.

Functions Return values
narg(...) Return the number of arguments
ident(...) Return all arguments unchanged, i.e. functional identity
fnil() Return nil, i.e. functional nil
ftrue() Return true, i.e. functional true
ffalse() Return false, i.e. functional false
fzero() Return 0, i.e. functional zero
fone() Return 1, i.e. functional one
first(a) Return first argument and discard the others
second(a,b) Return second argument and discard the others
third(a,b,c) Return third argument and discard the others
swap(a,b) Return first and second arguments swapped and discard the other arguments
swapv(a,b,...) Return first and second arguments swapped followed by the other arguments
echo(...) Return all arguments unchanged after echoing them on stdout

5 C API

These functions are provided for performance reason and compliance with the C API of other modules.

int mad_num_sign(num_t x)
Return an integer amongst {-1, 0, 1} representing the sign of the number x.

int mad_num_sign1(num_t x)
Return an integer amongst {-1, 1} representing the sign of the number x.

num_t mad_num_fact(int n)
Return the extended factorial the number x.

num_t mad_num_powi(num_t x, int n)
Return the number x raised to the power of the integer n using a fast algorithm.

num_t mad_num_sinc(num_t x)
Return the sine cardinal of the number x.

num_t mad_num_sinhc(num_t x)
Return the hyperbolic sine cardinal of the number x.

num_t mad_num_asinc(num_t x)
Return the arc sine cardinal of the number x.

num_t mad_num_asinhc(num_t x)
Return the hyperbolic arc sine cardinal of the number x.

30. REFERENCES 189

num_t mad_num_wf(num_t x, num_t relerr)
Return the Faddeeva function of the number x.

num_t mad_num_erf(num_t x, num_t relerr)
Return the error function of the number x.

num_t mad_num_erfc(num_t x, num_t relerr)
Return the complementary error function of the number x.

num_t mad_num_erfcx(num_t x, num_t relerr)
Return the scaled complementary error function of the number x.

num_t mad_num_erfi(num_t x, num_t relerr)
Return the imaginary error function of the number x.

num_t mad_num_dawson(num_t x, num_t relerr)
Return the Dawson integral for the number x.

6 References

190

Chapter 31. Functors

This chapter describes how to create, combine and use functors from the MAD environment. Functors are
objects that behave like functions with callable semantic, and also like readonly arrays with indexable se-
mantic, where the index is translated as a unique argument into the function call. They are mainly used by the
object model to distinguish them from functions which are interpreted as deferred expressions and evaluated
automatically on reading, and by the Survey and Track tracking codes to handle (user-defined) actions.

1 Constructors

This module provides mostly constructors to create functors from functions, functors and any objects with
callable semantic, and combine them all together.

functor(f)
Return a functor that encapsulates the function (or any callable object) f. Calling the returned functor
is like calling f itself with the same arguments.

compose(f, g)
Return a functor that encapsulates the composition of f and g. Calling the returned functor is like
calling (𝑓 ∘ 𝑔)(. . .). The operator f ^ g is a shortcut for compose if f is a functor.

chain(f, g)
Return a functor that encapsulates the calls chain of f and g. Calling the returned functor is like calling
𝑓(. . .); 𝑔(. . .). The operator f .. g is a shortcut for chain if f is a functor.

achain(f, g)
Return a functor that encapsulates the AND-ed calls chain of f and g. Calling the returned functor is
like calling 𝑓(. . .) ∧ 𝑔(. . .).

ochain(f, g)
Return a functor that encapsulates the OR-ed calls chain of f and g. Calling the returned functor is
like calling 𝑓(. . .) ∨ 𝑔(. . .).

bind1st(f, a)
Return a functor that encapsulates f and binds a as its first argument. Calling the returned functor is
like calling 𝑓(𝑎, . . .).

bind2nd(f, b)
Return a functor that encapsulates f and binds b as its second argument. Calling the returned functor
is like calling 𝑓(𝑎, 𝑏, . . .) where a may or may not be provided.

bind3rd(f, c)
Return a functor that encapsulates f and binds c as its third argument. Calling the returned functor is
like calling 𝑓(𝑎, 𝑏, 𝑐, . . .) where a and b may or may not be provided.

bind2st(f, a, b)
Return a functor that encapsulates f and binds a and b as its two first arguments. Calling the returned
functor is like calling 𝑓(𝑎, 𝑏, . . .).

31. FUNCTIONS 191

bind3st(f, a, b, c)
Return a functor that encapsulates f and binds a, b and c as its three first arguments. Calling the
returned functor is like calling 𝑓(𝑎, 𝑏, 𝑐, . . .).

bottom()

Return a functor that encapsulates the identity function ident to define the bottom symbol of functors.
Bottom is also available in the operator strings table opstr as "_|_".

2 Functions

is_functor(a)
Return true if a is a functor, false otherwise. This function is only available from the module
MAD.typeid.

192

Chapter 32. Monomials

This chapter describes Monomial objects useful to encode the variables powers of Multivariate Taylor Series
used by the Differential Algebra library of MAD-NG. The module for monomials is not exposed, only the
contructor is visible from the MAD environment and thus, monomials must be handled directly by their meth-
ods. Monomial objects do not know to which variables the stored orders belong, the relationship is only
through the indexes. Note that monomials are objects with reference semantic that store variable orders as
8-bit unsigned integers, thus arithmetic on variable orders occurs in the ring N/28N.

1 Constructors

The constructor for monomial is directly available from the MAD environment.

monomial([len_,] ord_)
Return a monomial of size len with the variable orders set to the values given by ord, as computed
by mono:fill(ord_). If ord is omitted then len must be provided. Default: len_ = #ord, ord_
= 0.

2 Attributes

mono.n

The number of variable orders in mono, i.e. its size or length.

3 Functions

is_monomial(a)
Return true if a is a monomial, false otherwise. This function is only available from the module
MAD.typeid.

4 Methods

The optional argument r_ represents a destination placeholder for results.

mono:same(n_)
Return a monomial of length n filled with zeros. Default: n_ = #mono.

mono:copy(r_)
Return a copy of mono.

mono:fill(ord_)
Return mono with the variable orders set to the values given by ord. Default: ord_ = 0.

– If ord is a number then all variable orders are set to the value of ord.

https://en.wikipedia.org/wiki/Monomial
https://en.wikipedia.org/wiki/Multivariable_calculus
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Differential_algebra

32. OPERATORS 193

– If ord is a list then all variable orders are set to the values given by ord.
– If ord is a string then all variable orders are set to the values given by ord, where each character

in the set [0-9A-Za-z] is interpreted as a variable order in the Basis 62, e.g. the string "Bc"
will be interpreted as a monomial with variable orders 11 and 38. Characters not in the set
[0-9A-Za-z] are not allowed and lead to an undefined behavior, meaning that orders ≥ 62
cannot be safely specified through strings.

mono:min()

Return the minimum variable order of mono.

mono:max()

Return the maximum variable order of mono.

mono:ord()

Return the order of mono, that is the sum of all the variable orders.

mono:ordp(step_)
Return the product of the variable orders of mono at every step. Default: step_ = 1.

mono:ordpf(step_)
Return the product of the factorial of the variable orders of mono at every step. Default: step_ = 1.

mono:add(mono2, r_)
Return the sum of the monomials mono and mono2, that is the sum of the all their variable orders, i.e.
(𝑜1 + 𝑜2) mod 256 where 𝑜1 and 𝑜2 are two variable orders at the same index in mono and mono2.

mono:sub(mono2, r_)
Return the difference of the monomials mono and mono2, that is the subtraction of the all their variable
orders, i.e. (𝑜1 − 𝑜2) mod 256 where 𝑜1 and 𝑜2 are two variable orders at the same index in mono
and mono2.

mono:concat(mono2, r_)
Return the concatenation of the monomials mono and mono2.

mono:reverse(r_)
Return the reverse of the monomial mono.

mono:totable()

Return a list containing all the variable orders of mono.

mono:tostring(sep_)
Return a string containing all the variable orders of mono encoded with characters in the set
[0-9A-Za-z] and separated by the string sep. Default: sep_ = ''.

https://en.wikipedia.org/wiki/Base62

32. C API 194

5 Operators

#mono

Return the number of variable orders in mono, i.e. its length.

mono[n]

Return the variable order at index n for 1 <= n <= #mono, nil otherwise.

mono[n] = v

Assign the value v to the variable order at index n for 1 <= n <= #mono, otherwise raise an “out of
bounds” error.

mono + mono2

Equivalent to mono:add(mono2).

mono - mono2

Equivalent to mono:sub(mono2).

mono < mono2

Return false if one variable order in mono is greater or equal to the variable order at the same index
in mono2, true otherwise.

mono <= mono2

Return false if one variable order in mono is greater than the variable order at the same index in
mono2, true otherwise.

mono == mono2

Return false if one variable order in mono is not equal to the variable order at the same index in
mono2, true otherwise.

mono .. mono2

Equivalent to mono:concat(mono2).

6 Iterators

ipairs(mono)
Return an ipairs iterator suitable for generic for loops. The generated values are those returned by
mono[i].

7 C API

type ord_t
The variable order type, which is an alias for 8-bit unsigned integer. In the C API, monomials are
arrays of variable orders with their size n tracked separately, i.e. a[n].

32. C API 195

ssz_t mad_mono_str(ssz_t n, ord_t a[n], str_t s)
Return the number of converted characters from the string s into variable orders stored to the monomial
a[n], as decribed in the method :fill().

str_t mad_mono_prt(ssz_t n, const ord_t a[n], char s[n + 1])
Return the string s filled with characters resulting from the conversion of the variable orders given in
the monomial a[n], as decribed in the method :tostring().

void mad_mono_fill(ssz_t n, ord_t a[n], ord_t v)
Fill the monomial a[n] with the variable order v.

void mad_mono_copy(ssz_t n, const ord_t a[n], ord_t r[n])
Copy the monomial a[n] to the monomial r[n].

ord_t mad_mono_min(ssz_t n, const ord_t a[n])
Return the minimum variable order of the monomial a[n].

ord_t mad_mono_max(ssz_t n, const ord_t a[n])
Return the minimum variable order of the monomial a[n].

int mad_mono_ord(ssz_t n, const ord_t a[n])
Return the order of the monomial a[n].

num_t mad_mono_ordp(ssz_t n, const ord_t a[n], idx_t stp)
Return the product of the variable orders of the monomial a[n] at every stp.

num_t mad_mono_ordpf(ssz_t n, const ord_t a[n], idx_t stp)
Return the product of the factorial of the variable orders of the monomial a[n] at every stp.

log_t mad_mono_eq(ssz_t n, const ord_t a[n], const ord_t b[n])
Return FALSE if one variable order in monomial a[n] is not equal to the variable order at the same
index in monomial b[n], TRUE otherwise.

log_t mad_mono_lt(ssz_t n, const ord_t a[n], const ord_t b[n])
Return FALSE if one variable order in monomial a[n] is greater or equal to the variable order at the
same index in monomial b[n], TRUE otherwise.

log_t mad_mono_le(ssz_t n, const ord_t a[n], const ord_t b[n])
Return FALSE if one variable order in monomial a[n] is greater than the variable order at the same
index in monomial b[n], TRUE otherwise.

int mad_mono_cmp(ssz_t n, const ord_t a[n], const ord_t b[n])
Return the difference between the first variable orders that are not equal for a given index starting from
the beginning in monomials a[n] and b[n].

int mad_mono_rcmp(ssz_t n, const ord_t a[n], const ord_t b[n])
Return the difference between the first variable orders that are not equal for a given index starting from
the end in monomials a[n] and b[n].

void mad_mono_add(ssz_t n, const ord_t a[n], const ord_t b[n], ord_t r[n])
Put the sum of the monomials a[n] and b[n] in the monomial r[n].

32. C API 196

void mad_mono_sub(ssz_t n, const ord_t a[n], const ord_t b[n], ord_t r[n])
Put the difference of the monomials a[n] and b[n] in the monomial r[n].

void mad_mono_cat(ssz_t n, const ord_t a[n], ssz_t m, const ord_t b[m], ord_t r[n + m])
Put the concatenation of the monomials a[n] and b[m] in the monomial r[n+m].

void mad_mono_rev(ssz_t n, const ord_t a[n], ord_t r[n])
Put the reverse of the monomial a[n] in the monomial r[n].

void mad_mono_print(ssz_t n, const ord_t a[n], FILE *fp_)
Print the monomial a[n] to the file fp. Default: fp_ = stdout.

197

Chapter 33. Numerical Ranges

This chapter describes range and logrange objects that are useful abstaction of numerical loops, intervals,
discrete sets, (log)lines and linear spaces. The module for numerical ranges is not exposed, only the con-
tructors are visible from the MAD environment and thus, numerical ranges must be handled directly by their
methods. Note that range and logrange have value semantic like number.

1 Constructors

The constructors for range and logrange are directly available from the MAD environment, except for the
special case of the concatenation operator applied to two or three number, which is part of the language
definition as a MAD-NG extension. The logrange behave as a the range but they work on logarithmic scale.
All constructor functions adjust the value of step to ensure stable sizes and iterators across platforms (see
the method adjust for details).

start..stop

start..stop..step

The concatenation operator applied to two or three numbers creates a range and does not perform any
adjustment of step. The default step for the first form is one.

range([start_,] stop, step_)
Return a range object starting at start, ending at stop (included), with increments of size step.
Default: start_ = 1, step_ = 1.

nrange([start_,] stop, size_)
Return a range object starting at start, ending at stop (included), with size increments. Default:
start_ = 1, size_ = 100.

logrange([start_,] stop, step_)
Return a logrange object starting at start, ending at stop (included), with increments of size step.
Default: start_ = 1, step_ = 1.

nlogrange([start_,] stop, size_)
Return a logrange object starting at start, ending at stop (included), with size increments. Default:
start_ = 1, size_ = 100.

torange(str)
Return a range decoded from the string str containing a literal numerical ranges of the form "a..b"
or "a..b..c" where a, b and c are literal numbers.

33. METHODS 198

1.1 Empty Ranges

Empty ranges of size zero can be created by fulfilling the constraints start > stop and step
> 0 or start < stop and step < 0 in range constructor.

1.2 Singleton Ranges

Singleton ranges of size one can be created by fulfilling the constraints step > stop-start
for start < stop and step < stop-start for stop < start in range constructor or
size == 1 in nrange constructor. In this latter case, step will be set to step = huge *
sign(stop-start).

1.3 Constant Ranges

Constant ranges of infinite size can be created by fulfilling the constraints start == stop and
step == 0 in range constructor or size == inf in nrange constructor. The user must satify
the constraint start == stop in both constructors to show its intention.

2 Attributes

rng.start

rng.logstart

The component start of the range and the logrange on a linear scale.

rng.stop

rng.logstop

The component stop of the range and the logrange on a linear scale.

rng.step

rng.logstep

The component step of the range and the logrange on a linear scale, which may slighlty differ from
the value provided to the constructors due to adjustment.

3 Functions

is_range(a)
is_logrange(a)

Return true if a is respectively a range or a logrange, false otherwise. These functions are only
available from the module MAD.typeid.

isa_range(a)
Return true if a is a range or a logrange (i.e. is-a range), false otherwise. This function is only
available from the module MAD.typeid.

33. METHODS 199

4 Methods

Unless specified, the object rng that owns the methods represents either a range or a logrange.

rng:is_empty()

Return false if rng contains at least one value, true otherwise.

rng:same()

Return rng itself. This method is the identity for objects with value semantic.

rng:copy()

Return rng itself. This method is the identity for objects with value semantic.

rng:ranges()

Return the values of start, stop and step, fully characterising the range rng.

rng:size()

Return the number of values contained by the range rng, i.e. its size that is the number of steps plus
one.

rng:value(x)
Return the interpolated value at x, i.e. interpreting the range rng as a (log)line with equation start
+ x * step.

rng:get(x)
Return rng:value(x) if the result is inside the range’s bounds, nil otherwise.

rng:last()

Return the last value inside the bounds of the range rng, nil otherwise.

rng:adjust()

Return a range with a step adjusted.

The internal quantity step is adjusted if the computed size is close to an integer by ±10−12. Then the
following properties should hold even for rational binary numbers given a consistent input for start,
stop, step and size:

– #range(start, stop, step) == size

– nrange(start, stop, size):step() == step

– range (start, stop, step):value(size-1) == stop

The maximum adjustment is step = step * (1-eps)^2, beyond this value it is the user reponsib-
ility to provide better inputs.

rng:bounds()

Return the values of start, last (as computed by rng:last()) and step (made positive) charac-
terising the boundaries of the range rng, i.e. interpreted as an interval, nil otherwise.

rng:overlap(rng2)
Return true if rng and rng2 overlap, i.e. have intersecting bounds, false otherwise.

33. OPERATORS 200

rng:reverse()

Return a range which is the reverse of the range rng, i.e. swap start and stop, and reverse step.

rng:log()

Return a logrange built by converting the range rng to logarithmic scale.

rng:unm()

Return a range with all components start, stop and step negated.

rng:add(num)

Return a range with start and stop shifted by num.

rng:sub(num)

Return a range with start and stop shifted by -num.

rng:mul(num)

Return a range with stop and step scaled by num.

rng:div(num)

Return a range with stop and step scaled by 1/num.

rng:tostring()

Return a string encoding the range rng into a literal numerical ranges of the form "a..b" or "a..b.
.c" where a, b and c are literal numbers.

rng:totable()

Return a table filled with #rng values computed by rng:value(). Note that ranges are objects with
a very small memory footprint while the generated tables can be huge.

5 Operators

#rng

Return the number of values contained by the range rng, i.e. it is equivalent to rng:size().

rng[n]

Return the value at index n contained by the range rng, i.e. it is equivalent to rng:get(round(n-1)).

-rng

Equivalent to rng:unm().

rng + num

num + rng

Equivalent to rng:add(num).

rng - num

Equivalent to rng:sub(num).

33. ITERATORS 201

num - rng

Equivalent to rng:unm():add(num).

num * rng

rng * num

Equivalent to rng:mul(num).

rng / num

Equivalent to rng:div(num).

rng == rng2

Return true if rng and rng2 are of same king, have equal start and stop, and their step are within
one eps from each other, false otherwise.

6 Iterators

ipairs(rng)
Return an ipairs iterator suitable for generic for loops. The generated values are those returned by
rng:value(i).

202

Chapter 34. Random Numbers

The module gmath provides few Pseudo-Random Number Generators (PRNGs).The defaut implementation
is the Xoshiro256** (XOR/shift/rotate) variant of the XorShift PRNG familly [XORSHFT03], an all-purpose,
rock-solid generator with a period of 2256 − 1 that supports long jumps of period 2128. This PRNG is
also the default implementation of recent versions of Lua (not LuaJIT, see below) and GFortran. See https:
//prng.di.unimi.it for details about Xoshiro/Xoroshiro PRNGs.

The module math of LuaJIT provides an implementation of the Tausworthe PRNG [TAUSWTH96], which
has a period of 2223 but doesn’t support long jumps, and hence uses a single global PRNG.

The module gmath also provides an implementation of the simple global PRNG of MAD-X for comparison.

It’s worth mentionning that none of these PRNG are cryptographically secure generators, they are never-
theless superior to the commonly used Mersenne Twister PRNG [MERTWIS98], with the exception of the
MAD-X PRNG.

All PRNG functions (except constructors) are wrappers around PRNG methods with the same name, and
expect an optional PRNG prng_ as first parameter. If this optional PRNG prng_ is omitted, i.e. not provided,
these functions will use the current global PRNG by default.

1 Contructors

randnew()

Return a new Xoshiro256** PRNG with a period of 2128 that is garuanteed to not overlapp with any
other Xoshiro256** PRNGs, unless it is initialized with a seed.

xrandnew()

Return a new MAD-X PRNG initialized with default seed 123456789. Hence, all new MAD-X PRNG
will generate the same sequence until they are initialized with a user-defined seed.

2 Functions

randset(prng_)
Set the current global PRNG to prng (if provided) and return the previous global PRNG.

is_randgen(a)
Return true if a is a PRNG, false otherwise. This function is also available from the module MAD.
typeid.

is_xrandgen(a)
Return true if a is a MAD-X PRNG, false otherwise. This function is only available from the
module MAD.typeid.

https://en.wikipedia.org/wiki/Xorshift
https://prng.di.unimi.it
https://prng.di.unimi.it

34. C API 203

3 Methods

All methods are also provided as functions from the module MAD.gmath for convenience. If the PRNG is
not provided, the current global PRNG is used instead.

prng:randseed(seed)
randseed([prng_,] seed)

Set the seed of the PRNG prng to seed.

prng:rand()

rand(prng_)
Return a new pseudo-random number in the range [0, 1) from the PRNG prng.

prng:randi()

randi(prng_)
Return a new pseudo-random number in the range of a u64_t from the PRNG prng (u32_t for the
MAD-X PRNG), see C API below for details.

prng:randn()

randn(prng_)
Return a new pseudo-random gaussian number in the range [-inf, +inf] from the PRNG prng by
using the Box-Muller transformation (Marsaglia’s polar form) to a peuso-random number in the range
[0, 1).

prng:randtn(cut_)
randtn([prng_,] cut_)

Return a new truncated pseudo-random gaussian number in the range [-cut_, +cut_] from the
PRNG prng by using iteratively the method prng:randn(). This simple algorithm is actually used
for compatibility with MAD-X. Default: cut_ = +inf.

prng:randp(lmb_)
randp([prng_,] lmb_)

Return a new pseudo-random poisson number in the range [0, +inf] from the PRNG prng with
parameter 𝜆 > 0 by using the inverse transform sampling method on peuso-random numbers. Default:
lmb_ = 1.

4 Iterators

ipairs(prng)
Return an ipairs iterator suitable for generic for loops. The generated values are those returned by
prng:rand().

34. REFERENCES 204

5 C API

type prng_state_t
type xrng_state_t

The Xoshiro256** and the MAD-X PRNG types.

num_t mad_num_rand(prng_state_t*)
Return a pseudo-random double precision float in the range [0, 1).

u64_t mad_num_randi(prng_state_t*)
Return a pseudo-random 64 bit unsigned integer in the range [0, ULLONG_MAX].

void mad_num_randseed(prng_state_t*, num_t seed)
Set the seed of the PRNG.

void mad_num_randjump(prng_state_t*)
Apply a jump to the PRNG as if 2128 pseudo-random numbers were generated. Hence PRNGs with dif-
ferent number of jumps will never overlap. This function is applied to new PRNGs with an incremental
number of jumps.

num_t mad_num_xrand(xrng_state_t*)
Return a pseudo-random double precision float in the range [0, 1) from the MAD-X PRNG.

u32_t mad_num_xrandi(xrng_state_t*)
Return a pseudo-random 32 bit unsigned integer in the range [0, UINT_MAX] from the MAD-X
PRNG.

void mad_num_xrandseed(xrng_state_t*, u32_t seed)
Set the seed of the MAD-X PRNG.

6 References

205

Chapter 35. Complex Numbers

This chapter describes the complex numbers as supported by MAD-NG. The module for Complex numbers
is not exposed, only the contructors are visible from the MAD environment and thus, complex numbers are
handled directly by their methods or by the generic functions of the same name from the module MAD.gmath.
Note that complex have value semantic like a pair of number equivalent to a C structure or an array const
num_t[2] for direct compliance with the C API.

1 Types promotion

The operations on complex numbers may involve other data types like real numbers leading to few combin-
ations of types. In order to simplify the descriptions, the generic names num and cpx are used for real and
complex numbers respectively. The following table summarizes all valid combinations of types for binary
operations involving at least one complex type:

Left Operand Type Right Operand Type Result Type
number complex complex
complex number complex
complex complex complex

2 Constructors

The constructors for complex numbers are directly available from the MAD environment, except for the special
case of the imaginary postfix, which is part of the language definition.

i

The imaginary postfix that qualifies literal numbers as imaginary numbers, i.e. 1i is the imaginary
unit, and 1+2i is the complex number 1 + 2𝑖.

complex(re_, im_)
Return the complex number equivalent to re + im * 1i. Default: re_ = 0, im_ = 0.

tocomplex(str)
Return the complex number decoded from the string str containing the literal complex number
"a+bi" (with no spaces) where a and b are literal numbers, i.e. the strings "1", "2i" and "1+2i"
will give respectively the complex numbers 1 + 0𝑖, 0 + 2𝑖 and 1 + 2𝑖.

https://en.wikipedia.org/wiki/Complex_number

35. REAL-LIKE METHODS 206

3 Attributes

cpx.re

The real part of the complex number cpx.

cpx.im

The imaginary part of the complex number cpx.

4 Functions

is_complex(a)
Return true if a is a complex number, false otherwise. This function is only available from the
module MAD.typeid.

is_scalar(a)
Return true if a is a number or a complex number, false otherwise. This function is only available
from the module MAD.typeid.

5 Methods

5.1 Operator-like Methods

Functions Return values Metamethods C functions
z:unm() −𝑧 __unm(z,_)
z:add(z2) 𝑧 + 𝑧2 __add(z,z2)
z:sub(z2) 𝑧 − 𝑧2 __sub(z,z2)
z:mul(z2) 𝑧 · 𝑧2 __mul(z,z2)
z:div(z2) 𝑧/𝑧2 __div(z,z2) mad_cpx_div_r()1

z:mod(z2) 𝑧 mod 𝑧2 __mod(z,z2) mad_cpx_mod_r()
z:pow(z2) 𝑧𝑧2 __pow(z,z2) mad_cpx_pow_r()
z:eq(z2) 𝑧 = 𝑧2 __eq(z,z2)

1 Division and inverse use a robust and fast complex division algorithm, see [CPXDIV] and [CPXDIV2] for details.

35. COMPLEX-LIKE METHODS 207

5.2 Real-like Methods

Functions Return values C functions
z:abs() |𝑧| mad_cpx_abs_r()
z:acos() cos−1 𝑧 mad_cpx_acos_r()
z:acosh() cosh−1 𝑧 mad_cpx_acosh_r()
z:acot() cot−1 𝑧 mad_cpx_atan_r()
z:acoth() coth−1 𝑧 mad_cpx_atanh_r()
z:asin() sin−1 𝑧 mad_cpx_asin_r()

z:asinc() sin−1 𝑧
𝑧 mad_cpx_asinc_r()

z:asinh() sinh−1 𝑥 mad_cpx_asinh_r()

z:asinhc() sinh−1 𝑧
𝑧 mad_cpx_asinhc_r()

z:atan() tan−1 𝑧 mad_cpx_atan_r()
z:atanh() tanh−1 𝑧 mad_cpx_atanh_r()
z:ceil() ⌈ℜ(𝑧)⌉+ 𝑖 ⌈ℑ(𝑧)⌉
z:cos() cos 𝑧 mad_cpx_cos_r()
z:cosh() cosh 𝑧 mad_cpx_cosh_r()
z:cot() cot 𝑧 mad_cpx_tan_r()
z:coth() coth 𝑧 mad_cpx_tanh_r()
z:exp() exp 𝑧 mad_cpx_exp_r()
z:floor() ⌊ℜ(𝑧)⌋+ 𝑖 ⌊ℑ(𝑧)⌋
z:frac() 𝑧 − trunc(𝑧)

z:hypot(z2)
√︀
𝑧2 + 𝑧22

2

z:hypot3(z2,z3)
√︀
𝑧2 + 𝑧22 + 𝑧23

Page 207, 2

z:inv(v_) 𝑣
𝑧 mad_cpx_inv_r()Page 206, 1

z:invsqrt(v_) 𝑣√
𝑧

mad_cpx_invsqrt_r()Page 206, 1

z:log() log 𝑧 mad_cpx_log_r()
z:log10() log10 𝑧 mad_cpx_log10_r()
z:powi(n) 𝑧𝑛 mad_cpx_powi_r()
z:round() ⌊ℜ(𝑧)⌉+ 𝑖 ⌊ℑ(𝑧)⌉
z:sin() sin 𝑧 mad_cpx_sin_r()
z:sinc() sin 𝑧

𝑧 mad_cpx_sinc_r()
z:sinh() sinh 𝑧 mad_cpx_sinh_r()

z:sinhc() sinh 𝑧
𝑧 mad_cpx_sinhc_r()

z:sqr() 𝑧 · 𝑧
z:sqrt()

√
𝑧 mad_cpx_sqrt_r()

z:tan() tan 𝑧 mad_cpx_tan_r()
z:tanh() tanh 𝑧 mad_cpx_tanh_r()
z:trunc() truncℜ(𝑧) + 𝑖 truncℑ(𝑧)
z:unit() 𝑧

|𝑧| mad_cpx_unit_r()

In methods inv() and invsqrt(), default is v_ = 1.
2 Hypot and hypot3 methods use a trivial implementation that may lead to numerical overflow/underflow.

35. OPERATORS 208

5.3 Complex-like Methods

Functions Return values C functions
z:cabs() |𝑧| mad_cpx_abs_r()
z:carg() arg 𝑧 mad_cpx_arg_r()
z:conj() 𝑧*

z:fabs() |ℜ(𝑧)|+ 𝑖 |ℑ(𝑧)|
z:imag() ℑ(𝑧)
z:polar() |𝑧| 𝑒𝑖 arg 𝑧 mad_cpx_polar_r()
z:proj() proj(𝑧) mad_cpx_proj_r()
z:real() ℜ(𝑧)
z:rect() ℜ(𝑧) cosℑ(𝑧) + 𝑖ℜ(𝑧) sinℑ(𝑧) mad_cpx_rect_r()
z:reim() ℜ(𝑧),ℑ(𝑧)

5.4 Error-like Methods

Error-like methods call C wrappers to the corresponding functions from the Faddeeva library from the MIT,
considered as one of the most accurate and fast implementation over the complex plane [FADDEEVA] (see
mad_num.c).

Functions Return values C functions

z:erf(rtol_) 2√
𝜋

∫︀ 𝑧
0 𝑒

−𝑡2𝑑𝑡 mad_cpx_erf_r()

z:erfc(rtol_) 1− erf(𝑧) mad_cpx_erfc_r()
z:erfi(rtol_) −𝑖 erf(𝑖𝑧) mad_cpx_erfi_r()

z:erfcx(rtol_) 𝑒𝑧
2
erfc(𝑧) mad_cpx_erfcx_r()

z:wf(rtol_) 𝑒−𝑧2 erfc(−𝑖𝑧) mad_cpx_wf_r()

z:dawson(rtol_) −𝑖
√
𝜋

2 𝑒−𝑧2 erf(𝑖𝑧) mad_cpx_dawson_r()

6 Operators

The operators on complex follow the conventional mathematical operations of Complex numbers.

-cpx

Return a complex resulting from the negation of the operand as computed by cpx:unm().

num + cpx

cpx + num

cpx + cpx

Return a complex resulting from the sum of the left and right operands as computed by cpx:add().

num - cpx

cpx - num

http://ab-initio.mit.edu/Faddeeva
https://en.wikipedia.org/wiki/Complex_number#Relations_and_operations

35. C API 209

cpx - cpx

Return a complex resulting from the difference of the left and right operands as computed by
cpx:sub().

num * cpx

cpx * num

cpx * cpx

Return a complex resulting from the product of the left and right operands as computed by cpx:mul().

num / cpx

cpx / num

cpx / cpx

Return a complex resulting from the division of the left and right operands as computed by cpx:div().
If the right operand is a complex number, the division uses a robut and fast algorithm implemented in
mad_cpx_div_r()Page 206, 1.

num % cpx

cpx % num

cpx % cpx

Return a complex resulting from the rest of the division of the left and right operands, i.e. 𝑥− 𝑦⌊𝑥𝑦 ⌋,
as computed by cpx:mod(). If the right operand is a complex number, the division uses a robut and
fast algorithm implemented in mad_cpx_div_r()Page 206, 1.

num ^ cpx

cpx ^ num

cpx ^ cpx

Return a complex resulting from the left operand raised to the power of the right operand as computed
by cpx:pow().

num == cpx

cpx == num

cpx == cpx

Return false if the real or the imaginary part differ between the left and right operands, true other-
wise. A number a will be interpreted as 𝑎+ 𝑖0 for the comparison.

7 C API

These functions are provided for performance reason and compliance (i.e. branch cut) with the C API of other
modules dealing with complex numbers like the linear and the differential algebra. For the same reason, some
functions hereafter refer to the section 7.3 of the C Programming Language Standard [ISOC99CPX].

num_t mad_cpx_abs_r(num_t x_re, num_t x_im)

Return the modulus of the complex x as computed by cabs().

num_t mad_cpx_arg_r(num_t x_re, num_t x_im)

Return the argument in [−𝜋,+𝜋] of the complex x as computed by carg().

35. C API 210

void mad_cpx_unit_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the complex x divided by its modulus as computed by cabs().

void mad_cpx_proj_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the projection of the complex x on the Riemann sphere as computed by cproj().

void mad_cpx_rect_r(num_t rho, num_t ang, cpx_t *r)
Put in r the rectangular form of the complex rho * exp(i*ang).

void mad_cpx_polar_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the polar form of the complex x.

void mad_cpx_inv_r(num_t x_re, num_t x_im, cpx_t *r)
cpx_t mad_cpx_inv(cpx_t x)

Put in r or return the inverse of the complex x.

void mad_cpx_invsqrt_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the square root of the inverse of the complex x.

void mad_cpx_div_r(num_t x_re, num_t x_im, num_t y_re, num_t y_im, cpx_t *r)
cpx_t mad_cpx_div(cpx_t x, cpx_t y)

Put in r or return the complex x divided by the complex y.

void mad_cpx_mod_r(num_t x_re, num_t x_im, num_t y_re, num_t y_im, cpx_t *r)
Put in r the remainder of the division of the complex x by the complex y.

void mad_cpx_pow_r(num_t x_re, num_t x_im, num_t y_re, num_t y_im, cpx_t *r)
Put in r the complex x raised to the power of complex y using cpow().

void mad_cpx_powi_r(num_t x_re, num_t x_im, int n, cpx_t *r)
cpx_t mad_cpx_powi(cpx_t x, int n)

Put in r or return the complex x raised to the power of the integer n using a fast algorithm.

void mad_cpx_sqrt_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the square root of the complex x as computed by csqrt().

void mad_cpx_exp_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the exponential of the complex x as computed by cexp().

void mad_cpx_log_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the natural logarithm of the complex x as computed by clog().

void mad_cpx_log10_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the logarithm of the complex x.

void mad_cpx_sin_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the sine of the complex x as computed by csin().

void mad_cpx_cos_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the cosine of the complex x as computed by ccos().

35. C API 211

void mad_cpx_tan_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the tangent of the complex x as computed by ctan().

void mad_cpx_sinh_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the hyperbolic sine of the complex x as computed by csinh().

void mad_cpx_cosh_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the hyperbolic cosine of the complex x as computed by ccosh().

void mad_cpx_tanh_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the hyperbolic tangent of the complex x as computed by ctanh().

void mad_cpx_asin_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the arc sine of the complex x as computed by casin().

void mad_cpx_acos_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the arc cosine of the complex x as computed by cacos().

void mad_cpx_atan_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the arc tangent of the complex x as computed by catan().

void mad_cpx_asinh_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the hyperbolic arc sine of the complex x as computed by casinh().

void mad_cpx_acosh_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the hyperbolic arc cosine of the complex x as computed by cacosh().

void mad_cpx_atanh_r(num_t x_re, num_t x_im, cpx_t *r)
Put in r the hyperbolic arc tangent of the complex x as computed by catanh().

void mad_cpx_sinc_r(num_t x_re, num_t x_im, cpx_t *r)
cpx_t mad_cpx_sinc(cpx_t x)

Put in r or return the sine cardinal of the complex x.

void mad_cpx_sinhc_r(num_t x_re, num_t x_im, cpx_t *r)
cpx_t mad_cpx_sinhc(cpx_t x)

Put in r or return the hyperbolic sine cardinal of the complex x.

void mad_cpx_asinc_r(num_t x_re, num_t x_im, cpx_t *r)
cpx_t mad_cpx_asinc(cpx_t x)

Put in r or return the arc sine cardinal of the complex x.

void mad_cpx_asinhc_r(num_t x_re, num_t x_im, cpx_t *r)
cpx_t mad_cpx_asinhc(cpx_t x)

Put in r or return the hyperbolic arc sine cardinal of the complex x.

void mad_cpx_wf_r(num_t x_re, num_t x_im, num_t relerr, cpx_t *r)
cpx_t mad_cpx_wf(cpx_t x, num_t relerr)

Put in r or return the Faddeeva function of the complex x.

void mad_cpx_erf_r(num_t x_re, num_t x_im, num_t relerr, cpx_t *r)

35. REFERENCES 212

cpx_t mad_cpx_erf(cpx_t x, num_t relerr)
Put in r or return the error function of the complex x.

void mad_cpx_erfc_r(num_t x_re, num_t x_im, num_t relerr, cpx_t *r)
cpx_t mad_cpx_erfc(cpx_t x, num_t relerr)

Put in r or return the complementary error function of the complex x.

void mad_cpx_erfcx_r(num_t x_re, num_t x_im, num_t relerr, cpx_t *r)
cpx_t mad_cpx_erfcx(cpx_t x, num_t relerr)

Put in r or return the scaled complementary error function of the complex x.

void mad_cpx_erfi_r(num_t x_re, num_t x_im, num_t relerr, cpx_t *r)
cpx_t mad_cpx_erfi(cpx_t x, num_t relerr)

Put in r or return the imaginary error function of the complex x.

void mad_cpx_dawson_r(num_t x_re, num_t x_im, num_t relerr, cpx_t *r)
cpx_t mad_cpx_dawson(cpx_t x, num_t relerr)

Put in r or return the Dawson integral for the complex x.

8 References

213

Chapter 36. Linear Algebra

This chapter describes the real matrix, complex cmatrix and integer imatrix objects as supported by MAD-
NG. The module for Vector and Matrix is not exposed, only the contructors are visible from the MAD environ-
ment and thus, matrices are handled directly by their methods or by the generic functions of the same name
from the module MAD.gmath. The imatrix, i.e. matrix of integers, are mainly used for indexing other types
of matrix and therefore supports only a limited subset of the features. Column and row vectors are shortcuts
for [𝑛 × 1] and [1 × 𝑛] matrices respectively. Note that matrix, cmatrix and imatrix are all defined as C
structures containing their elements in row-major order for direct compliance with the C API.

1 Types promotion

The matrix operations may involve other data types like real and complex numbers leading to many combin-
ations of types. In order to simplify the descriptions, the generic names num, cpx and idx (indexes) are used
for real, complex and integer numbers respectively, vec, cvec and ivec for real, complex and integer vectors
respectively, and mat, cmat and imat for real, complex and integer matrices respectively. For example, the
sum of a complex number cpx and a real matrix mat gives a complex matrix cmat. The case of idx means
that a number will be interpreted as an index and automatically rounded if it does not hold an integer value.
The following table summarizes all valid combinations of types for binary operations involving at least one
matrix type:

Left Operand Type Right Operand Type Result Type
number imatrix imatrix
imatrix number imatrix
imatrix imatrix imatrix
number matrix matrix
matrix number matrix
matrix matrix matrix
number cmatrix cmatrix
complex matrix cmatrix
complex cmatrix cmatrix
matrix complex cmatrix
matrix cmatrix cmatrix
cmatrix number cmatrix
cmatrix complex cmatrix
cmatrix matrix cmatrix
cmatrix cmatrix cmatrix

https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Row-_and_column-major_order

36. FUNCTIONS 214

2 Constructors

The constructors for vectors and matrices are directly available from the MAD environment. Note that real,
complex or integer matrix with zero size are not allowed, i.e. the smallest allowed matrix has sizes of [1×1].

vector(nrow)
cvector(nrow)
ivector(nrow)

Return a real, complex or integer column vector (i.e. a matrix of size [𝑛row × 1]) filled with zeros. If
nrow is a table, it is equivalent to vector(#nrow):fill(nrow).

matrix(nrow, ncol_)
cmatrix(nrow, ncol_)
imatrix(nrow, ncol_)

Return a real, complex or integer matrix of size [𝑛row × 𝑛col] filled with zeros. If nrow is a table, it is
equivalent to matrix(#nrow, #nrow[1] or 1):fill(nrow), and ignoring ncol. Default: ncol_
= rnow.

linspace([start_,] stop, size_)
Return a real or complex column vector of length size filled with values equally spaced between
start and stop on a linear scale. Note that numerical range can generate the same real sequence of
values in a more compact form. Default: start_ = 0, size_ = 100.

logspace([start_,] stop, size_)
Return a real or complex column vector of length size filled with values equally spaced between
start and stop on a logarithmic scale. Note that numerical logrange can generate the same real
sequence of values in a more compact form. Default: start_ = 1, size_ = 100.

3 Attributes

mat.nrow

The number of rows of the real, complex or integer matrix mat.

mat.ncol

The number of columns of the real, complex or integer matrix mat.

4 Functions

is_vector(a)
is_cvector(a)
is_ivector(a)

Return true if a is respectively a real, complex or integer matrix of size [𝑛row×1] or [1×𝑛row], false
otherwise. These functions are only available from the module MAD.typeid.

36. SIZES AND INDEXING 215

isa_vector(a)
Return true if a is a real or complex vector (i.e. is-a vector), false otherwise. This function is only
available from the module MAD.typeid.

isy_vector(a)
Return true if a is a real, complex or integer vector (i.e. is-any vector), false otherwise. This
function is only available from the module MAD.typeid.

is_matrix(a)
is_cmatrix(a)
is_imatrix(a)

Return true if a is respectively a real, complex or integer matrix, false otherwise. These functions
are only available from the module MAD.typeid.

isa_matrix(a)
Return true if a is a real or complex matrix (i.e. is-a matrix), false otherwise. This function is only
available from the module MAD.typeid.

isy_matrix(a)
Return true if a is a real, complex or integer matrix (i.e. is-any matrix), false otherwise. This
function is only available from the module MAD.typeid.

5 Methods

5.1 Special Constructors

mat:vec()

Return a vector of the same type as mat filled with the values of the elements of the vectorized real,
complex or integer matrix mat equivalent to mat:t():reshape(#mat,1).

mat:vech()

Return a vector of the same type as mat filled with the values of the elements of the half vectorized
real, complex or integer symmetric matrix mat. The symmetric property can be pre-checked by the
user with mat:is_symm().

mat:diag(k_)
If mat is a matrix, return a column vector containing its 𝑘-th diagonal equivalent to mat:getdiag(k).
If mat is a vector, return a square matrix with its 𝑘-th diagonal set to the values of the elements of mat
equivalent to mat:same(n,n):setdiag(mat,k) where n = #mat+abs(k). Default: k_ = 0.

https://en.wikipedia.org/wiki/Vectorization_(mathematics)
https://en.wikipedia.org/wiki/Vectorization_(mathematics)#Half-vectorization

36. GETTERS AND SETTERS 216

5.2 Sizes and Indexing

mat:size()

Return the number of elements nrow * ncol of the real, complex or integer matrix mat equivalent to
#mat.

mat:bytesize()

Return the number of bytes used by the data storage of the real, complex or integer matrix mat equi-
valent to #mat * sizeof(mat[1]).

mat:sizes()

Return the number of rows nrow and columns ncol of the real, complex or integer matrix mat. Note
that #mat returns the full size nrow * ncol of the matrix.

mat:tsizes()

Return the number of columns ncol and rows nrow (i.e. transposed sizes) of the real, complex or
integer matrix mat equivalent to swap(mat:sizes()).

mat:getij(ij_, ri_, rj_)
Return two ivector or ri and rj containing the indexes (i,j) extracted from the iterable ij for the
real, complex or integer matrix mat. If ij is a number, the two returned items are also numbers. This
method is the reverse method of mat:getidx() to convert 1D indexes into 2D indexes for the given
matrix sizes. Default: ij_ = 1..#mat.

mat:getidx(ir_, jc_, rij_)
Return an ivector or rij containing #ir * #jc vector indexes in row-major order given by the iterable
ir and jc of the real, complex or integer matrix mat, followed by ir and jc potentially set from
defaults. If both ir and jc are numbers, it returns a single number. This method is the reverse method
of mat:getij() to convert 2D indexes into 1D indexes for the given matrix sizes. Default: ir_ =
1..nrow, jc_ = 1..ncol.

mat:getdidx(k_)
Return an iterable describing the indexes of the 𝑘-th diagonal of the real, complex or integer matrix
mat where -nrow <= k <= ncol. This method is useful to build the 1D indexes of the 𝑘-th diagonal
for the given matrix sizes. Default k_ = 0

5.3 Getters and Setters

mat:get(i, j)
Return the value of the element at the indexes (i,j) of the real, complex or integer matrix mat for 1
<= i <= nrow and 1 <= j <= ncol, nil otherwise.

mat:set(i, j, v)
Assign the value v to the element at the indexes (i,j) of the real, complex or integer matrix mat
for 1 <= i <= nrow and 1 <= j <= ncol and return the matrix, otherwise raise an “index out of
bounds” error.

36. GETTERS AND SETTERS 217

mat:geti(n)
Return the value of the element at the vector index n of the real, complex or integer matrix mat for 1
<= n <= #mat, i.e. interpreting the matrix as a vector, nil otherwise.

mat:seti(n, v)
Assign the value v to the element at the vector index n of the real, complex or integer matrix mat for
1 <= n <= #mat and return the matrix, i.e. interpreting the matrix as a vector, otherwise raise an
“index out of bounds” error.

mat:getvec(ij, r_)
Return a column vector or r containing the values of the elements at the vector indexes given by the
iterable ij of the real, complex or integer matrix mat, i.e. interpreting the matrix as a vector.

mat:setvec(ij, a, p_, s_)
Return the real, complex or integer matrix mat after filling the elements at the vector indexes given
by the iterable ij, i.e. interpreting the matrix as a vector, with the values given by a depending of its
kind:

– if a is a scalar, it is will be used repetitively.
– if a is an iterable then the matrix will be filled with values from a[n] for 1 <= n <= #a and

recycled repetitively if #a < #ij.
– if a is a callable, then a is considered as a stateless iterator, and the matrix will be filled with

the values v returned by iterating s, v = a(p, s).

mat:insvec(ij, a)
Return the real, complex or integer matrix mat after inserting the elements at the vector indexes given
by the iterable ij, i.e. interpreting the matrix as a vector, with the values given by a depending of its
kind:

– if a is a scalar, it is will be used repetitively.
– if a is an iterable then the matrix will be filled with values from a[n] for 1 <= n <= #a.

The elements after the inserted indexes are shifted toward the end of the matrix in row-major order and
discarded if they go beyond the last index.

mat:remvec(ij)
Return the real, complex or integer matrix mat after removing the elements at the vector indexes given
by the iterable ij, i.e. interpreting the matrix as a shrinking vector, and reshaped as a column vector
of size #mat - #ij.

mat:swpvec(ij, ij2)
Return the real, complex or integer matrix mat after swapping the values of the elements at the vector
indexes given by the iterable ij and ij2, i.e. interpreting the matrix as a vector.

mat:getsub(ir_, jc_, r_)
Return a [#ir × #jc] matrix or r containing the values of the elements at the indexes given by the
iterable ir and jc of the real, complex or integer matrix mat. If ir = nil, jc ~= nil and r is a
1D iterable, then the latter is filled using column-major indexes. Default: as mat:getidx().

36. GETTERS AND SETTERS 218

mat:setsub(ir_, jc_, a, p_, s_)
Return the real, complex or integer matrix mat after filling the elements at the indexes given by the
iterable ir and jc with the values given by a depending of its kind:

– if a is a scalar, it is will be used repetitively.
– if a is an iterable then the rows and columns will be filled with values from a[n] for 1 <= n
<= #a and recycled repetitively if #a < #ir * #ic.

– if a is a callable, then a is considered as a stateless iterator, and the columns will be filled with
the values v returned by iterating s, v = a(p, s).

If ir = nil, jc ~= nil and a is a 1D iterable, then the latter is used to filled the matrix in the
column-major order. Default: as mat:getidx().

mat:inssub(ir_, jc_, a)
Return the real, complex or integer matrix mat after inserting elements at the indexes (i,j) given by
the iterable ir and jc with the values given by a depending of its kind:

– if a is a scalar, it is will be used repetitively.
– if a is an iterable then the rows and columns will be filled with values from a[n] for 1 <= n
<= #a and recycled repetitively if #a < #ir * #ic.

The values after the inserted indexes are pushed toward the end of the matrix, i.e. interpreting the
matrix as a vector, and discarded if they go beyond the last index. If ir = nil, jc ~= nil and a
is a 1D iterable, then the latter is used to filled the matrix in the column-major order. Default: as
mat:getidx().

mat:remsub(ir_, jc_)
Return the real, complex or integer matrix mat after removing the rows and columns at the indexes
given by the iterable ir and jc and reshaping the matrix accordingly. Default: as mat:getidx().

mat:swpsub(ir_, jc_, ir2_, jc2_)
Return the real, complex or integer matrix mat after swapping the elements at indexes given by the
iterable iterable ir and jc with the elements at indexes given by iterable ir2 and jc2. Default: as
mat:getidx().

mat:getrow(ir, r_)
Equivalent to mat:getsub() with jc = nil.

mat:setrow(ir, a, p_, s_)
Equivalent to mat:setsub() with jc = nil.

mat:insrow(ir, a)
Equivalent to mat:inssub() with jc = nil.

mat:remrow(ir)
Equivalent to mat:remsub() with jc = nil.

mat:swprow(ir, ir2)
Equivalent to mat:swpsub() with jc = nil and jc2 = nil.

mat:getcol(jc, r_)
Equivalent to mat:getsub() with ir = nil.

36. MATRIX PROPERTIES 219

mat:setcol(jc, a, p_, s_)
Equivalent to mat:setsub() with ir = nil.

mat:inscol(jc, a)
Equivalent to mat:inssub() with ir = nil. If a is a matrix with ncol > 1 then a = 0 and it is
followed by mat:setsub() with ir = nil to obtain the expected result.

mat:remcol(jc)
Equivalent to mat:remsub() with ir = nil.

mat:swpcol(jc, jc2)
Equivalent to mat:swpsub() with ir = nil and ir2 = nil.

mat:getdiag([k_,] r_)
Return a column vector of length min(nrow, ncol)-abs(k) or r containing the values of the ele-
ments on the 𝑘-th diagonal of the real, complex or integer matrix mat using mat:getvec(). Default:
as mat:getdidx().

mat:setdiag(a, [k_,] p_, s_)
Return the real, complex or integer matrix mat after filling the elements on its 𝑘-th diagonal with the
values given by a using mat:setvec(). Default: as mat:getdidx().

5.4 Cloning and Reshaping

mat:copy(r_)
Return a matrix or r filled with a copy of the real, complex or integer matrix mat.

mat:same([nr_, nc_,] v_)
Return a matrix with elements of the type of v and with nr rows and nc columns. Default: v_ =
mat[1], nr_ = nrow, nc_ = ncol.

mat:reshape(nr_, nc_)
Return the real, complex or integer matrix mat reshaped to the new sizes nr and nc that must result
into an equal or smaller number of elements, or it will raise an invalid new sizes error. Default: nr_
= #mat, nc_ = 1.

mat:_reshapeto(nr, nc_)
Same as mat:reshape() except that nr must be explicitly provided as this method allows for a larger
size than mat current size. A typical use of this method is to expand a vector after an explicit shrinkage,
while keeping track of its original size, e.g. similar to vector(100) :reshape(1):seti(1,1)
:_reshapeto(2):seti(2,1) that would raise an “index out of bounds” error without the call to
reshapeto(). Default nc = 1.

WARNING: This method is unsafe and may crash MAD-NG with, e.g. a Segmentation fault , if wrongly
used. It is the responsibility of the user to ensure that mat was created with a size greater than or equal
to the new size.

https://en.wikipedia.org/wiki/Segmentation_fault

36. FILLING AND MOVING 220

5.5 Matrix Properties

mat:is_const(tol_)
Return true if all elements are equal within the tolerance tol, false otherwise. Default: tol_ = 0.

mat:is_real(tol_)
Return true if the imaginary part of all elements are equal to zero within the tolerance tol, false
otherwise. Default: tol_ = 0.

mat:is_imag(tol_)
Return true if the real part of all elements are equal to zero within the tolerance tol, false otherwise.
Default: tol_ = 0.

mat:is_diag(tol_)
Return true if all elements off the diagonal are equal to zero within the tolerance tol, false otherwise.
Default: tol_ = 0.

mat:is_symm([tol_,] [sk_,] c_)
Return true if mat is a symmetric matrix, i.e. 𝑀 = 𝑀* within the tolerance tol, false otherwise. It
checks for a skew-symmetric matrix if sk = true, and for a Hermitian matrix if c ~= false, and a
skew-Hermitian matrix if both are combined. Default: tol_ = 0.

mat:is_symp(tol_)
Return true if mat is a symplectic matrix, i.e. 𝑀*𝑆2𝑛𝑀 = 𝑆2𝑛 within the tolerance tol, false
otherwise. Default: tol_ = eps.

5.6 Filling and Moving

mat:zeros()

Return the real, complex or integer matrix mat filled with zeros.

mat:ones(v_)
Return the real, complex or integer matrix mat filled with the value of v. Default: v_ = 1.

mat:eye(v_)
Return the real, complex or integer matrix mat filled with the value of v on the diagonal and zeros
elsewhere. The name of this method comes from the spelling of the Identity matrix 𝐼 . Default: v_ =
1.

mat:seq([v_,] d_)
Return the real, complex or integer matrix mat filled with the indexes of the elements (i.e. starting at 1)
and shifted by the value of v. The matrix is filled in the row-major order unless d = 'col'. Default:
v_ = 0.

mat:random(f_, ...)
Return the real, complex or integer matrix mat filled with random values generated by f(...), and
called twice for each element for a cmatrix. Default: f_ = math.random.

https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Skew-symmetric_matrix
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Skew-Hermitian_matrix
https://en.wikipedia.org/wiki/Symplectic_matrix
https://en.wikipedia.org/wiki/Identity_matrix

36. MAPPING AND FOLDING 221

mat:shuffle()

Return the real, complex or integer matrix mat with its elements randomly swapped using the
Fisher–Yates or Knuth shuffle algorithm and math.random as the PRNG.

mat:symp()

Return the real or complex matrix mat filled with the block diagonal unitary Symplectic matrix some-
times named 𝐽2𝑛 or 𝑆2𝑛. The matrix mat must be square with even number of rows and columns
otherwise a “2n square matrix expected” error is raised.

mat:circ(v)
Return the real or complex matrix mat filled as a Circulant matrix using the values from the iterable
v, and rotating elements for each row or column depending on the shape of v.

mat:fill(a, p_, s_)
Return the real, complex or integer matrix mat filled with values provided by a depending of its kind:

– if a is a scalar, it is equivalent to mat:ones(a).
– if a is a callable, then:

– if p and s are provided, then a is considered as a stateless iterator, and the matrix will be
filled with the values v returned by iterating s, v = a(p, s).

– otherwise a is considered as a generator, and the matrix will be filled with values returned
by calling a(mat:get(i,j), i, j).

– if a is an iterable then:
– if a[1] is also an iterable, the matrix will be filled with the values from a[i][j] for 1 <=
i <= nrow and 1 <= j <= ncol, i.e. treated as a 2D container.

– otherwise the matrix will be filled with values from a[n] for 1 <= n <= #mat, i.e. treated
as a 1D container.

mat:rev(d_)
Reverse the elements of the matrix mat according to the direction d:

– If d = 'vec', it reverses the entire matrix.
– If d = 'row', it reverses each row.
– If d = 'col', it reverses each column.
– If d = 'diag', it reverse the only the diagonal.

Default: d_ = 'vec'.

mat:roll(nr_, nc_)
Return the real, complex or integer matrix mat after rolling its rows by nr ∈ Z and then columns by
nc ∈ Z. Default: nr_ = 0, nc_ = 0.

mat:movev(i, j, k, r_)
Return the real, complex or integer matrix r after moving the elements in mat[i..j] to r[k..k+j-i]
with 1 <= i <= j <= #mat and 1 <= k <= k+j-i <= #r. Default: r_ = mat.

mat:shiftv(i, n_)
Return the real, complex or integer matrix mat after shifting the elements in mat[i..] to mat[i+n.
.] if n > 0 and in the opposite direction if n < 0, i.e. it is equivalent to mat:movev(i, #mat-n,
i+n) for n > 0 and to mat:movev(i, #mat, i+n) for n < 0. Default: n_ = 1.

https://en.wikipedia.org/wiki/Fisher\T1\textendash {}Yates_shuffle
https://en.wikipedia.org/wiki/Symplectic_matrix
https://en.wikipedia.org/wiki/Circulant_matrix

36. MAPPING AND FOLDING 222

5.7 Mapping and Folding

This section lists the high-order functions map, fold and their variants useful in functional pro-
gramming1, followed by sections that list their direct application.

mat:foreach([ij_,] f)
Return the real, complex or integer matrix mat after applying the callable f to the elements at the
indexes given by the iterable ij using f(mat[n], n), i.e. interpreting the matrix as a vector. Default:
ij_ = 1..#mat.

mat:filter([ij_,] p, r_)
Return a matrix or r filled with the values of the elements of the real, complex or integer matrix mat at
the indexes given by the iterable ij if they are selected by the callable predicate p using p(mat[n],
n) = true, i.e. interpreting the matrix as a vector. This method returns next to the matrix, a table if
r is a table or a ivector otherwise, containing the indexes of the selected elements returned. Default:
ij_ = 1..#mat.

mat:filter_out([ij_,] p, r_)
Equivalent to map:filter(ij_, compose(lnot,p), r_), where the functions compose() and
lnot() are provided by the module MAD.gfunc.

mat:map([ij_,] f, r_)
Return a matrix or r filled with the values returned by the callable (or the operator string) f applied to
the elements of the real, complex or integer matrix mat at the indexes given by the iterable ij using
f(mat[n], n), i.e. interpreting the matrix as a vector. If r = 'in' or r = nil and ij ~= nil
then it is assigned mat, i.e. map in place. If r = nil still, then the type of the returned matrix is
determined by the type of the value returned by f() called once before mapping. Default: ij_ =
1..#mat.

mat:map2(y, [ij_,] f, r_)
Equivalent to mat:map() but with two arguments passed to f, i.e. using f(mat[n], y[n], n).

mat:map3(y, z, [ij_,] f, r_)
Equivalent to mat:map() but with three arguments passed to f, i.e. using f(mat[n], y[n], z[n],
n). Note that f cannot be an operator string, as only unary and binary operators are avalaible in such
form.

mat:foldl(f, [x0_,] [d_,] r_)
Return a scalar, a vector or r filled with the values returned by the callable (or the operator string)
f applied iteratively to the elements of the real, complex or integer matrix mat using the folding left
(forward with increasing indexes) expression v = f(v, mat[n]) starting at x0 and running in the
direction depending on the string d:

– If d = 'vec', the folding left iteration runs on the entire matrix mat interpreted as a vector and
a scalar is returned.

– If d = 'row', the folding left iteration runs on the rows of the matrix mat and a column vector
is returned.

1 For true Functional Programming, see the module MAD.lfun, a binding of the LuaFun library adapted to the ecosystem of
MAD-NG.

https://en.wikipedia.org/wiki/Map_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/First-order_logic
https://github.com/luafun/luafun

36. MAPPING REAL-LIKE METHODS 223

– If d = 'col', the folding left iteration runs on the columns of the matrix mat and a row vector
is returned.

– If d = 'diag', the folding left iteration runs on the diagonal of the matrix mat and a scalar is
returned.

Note that ommitting both x0 and d implies to not specify r as well, otherwise the latter will be in-
terpreted as x0. If r = nil and d = 'row' or d = 'col', then the type of the returned vector is
determined by the type of the value returned by f() called once before folding. Default: x0 = mat[1]
(or first row or column element), d = 'vec'.

mat:foldr(f, [x0_,] [d_,] r_)
Same as mat:foldl() but the callable (or the operator string) f is applied iteratively using the
folding right (backward with decreasing indexes) expression v = f(mat[n], v). Default: x0 =
mat[#mat] (or last row or column element), d = 'vec'.

mat:scanl(f, [x0_,] [d_,] r_)
Return a vector, a matrix or r filled with the values returned by the callable (or the operator string) f
applied iteratively to the elements of the real, complex or integer matrix mat using the scanning left
(forward with increasing indexes) expression v = f(v, mat[n]) starting at x0 and running in the
direction depending on the string d:

– If d = 'vec', the scanning left iteration runs on the entire matrix mat interpreted as a vector
and a vector is returned.

– If d = 'row', the scanning left iteration runs on the rows of the matrix mat and a matrix is
returned.

– If d = 'col', the scanning left iteration runs on the columns of the matrix mat and a matrix is
returned.

– If d = 'diag', the scanning left iteration runs on the diagonal of the matrix mat and a vector
is returned.

Note that ommitting both x0 and d implies to not specify r as well, otherwise the latter will be inter-
preted as x0. If r = nil, then the type of the returned matrix is determined by the type of the value
returned by f() called once before scanning. Default: x0 = mat[1] (or first row or column element),
d = 'vec'.

mat:scanr(f, [x0_,] [d_,] r_)
Same as mat:scanl() but the callable (or the operator string) f is applied iteratively using the
scanning right (backward with decreasing indexes) expression v = f(mat[n], v). Default: x0 =
mat[#mat] (or last row or column element), d = 'vec'.

5.8 Mapping Real-like Methods

The following table lists the methods built from the application of mat:map() and variants to the real-like
functions from the module MAD.gmath for matrix and cmatrix. The methods mat:sign(), mat:sign1()
and mat:atan2() are not available for cmatrix, and only the methods mat:abs(), mat:sqr() and
mat:sign() are available for imatrix.

36. MAPPING COMPLEX-LIKE METHODS 224

Functions Equivalent Mapping
mat:abs(r_) mat:map(abs,r_)
mat:acos(r_) mat:map(acos,r_)
mat:acosh(r_) mat:map(acosh,r_)
mat:acot(r_) mat:map(acot,r_)
mat:acoth(r_) mat:map(acoth,r_)
mat:asin(r_) mat:map(asin,r_)
mat:asinh(r_) mat:map(asinh,r_)
mat:asinc(r_) mat:map(asinc,r_)
mat:asinhc(r_) mat:map(asinhc,r_)
mat:atan(r_) mat:map(atan,r_)
mat:atan2(y,r_) mat:map2(y,atan2,r_)
mat:atanh(r_) mat:map(atanh,r_)
mat:ceil(r_) mat:map(ceil,r_)
mat:cos(r_) mat:map(cos,r_)
mat:cosh(r_) mat:map(cosh,r_)
mat:cot(r_) mat:map(cot,r_)
mat:coth(r_) mat:map(coth,r_)
mat:exp(r_) mat:map(exp,r_)
mat:floor(r_) mat:map(floor,r_)
mat:frac(r_) mat:map(frac,r_)
mat:hypot(y,r_) mat:map2(y,hypot,r_)
mat:hypot3(y,z,r_) mat:map3(y,z,hypot3,r_)
mat:invsqrt([v_,]r_) mat:map2(v_ or 1,invsqrt,r_)
mat:log(r_) mat:map(log,r_)
mat:log10(r_) mat:map(log10,r_)
mat:round(r_) mat:map(round,r_)
mat:sign(r_) mat:map(sign,r_)
mat:sign1(r_) mat:map(sign1,r_)
mat:sin(r_) mat:map(sin,r_)
mat:sinc(r_) mat:map(sinc,r_)
mat:sinh(r_) mat:map(sinh,r_)
mat:sinhc(r_) mat:map(sinhc,r_)
mat:sqr(r_) mat:map(sqr,r_)
mat:sqrt(r_) mat:map(sqrt,r_)
mat:tan(r_) mat:map(tan,r_)
mat:tanh(r_) mat:map(tanh,r_)
mat:trunc(r_) mat:map(trunc,r_)

36. MAPPING VECTOR-LIKE METHODS 225

5.9 Mapping Complex-like Methods

The following table lists the methods built from the application of mat:map() to the the complex-like func-
tions from the module MAD.gmath for matrix and cmatrix.

Functions Equivalent Mapping
mat:cabs(r_) mat:map(cabs,r_)
mat:carg(r_) mat:map(carg,r_)
mat:conj(r_) mat:map(conj,r_)
mat:cplx(im_,r_) mat:map2(im_, cplx, r_)
mat:fabs(r_) mat:map(fabs,r_)
mat:imag(r_) mat:map(imag,r_)
mat:polar(r_) mat:map(polar,r_)
mat:proj(r_) mat:map(proj,r_)
mat:real(r_) mat:map(real,r_)
mat:rect(r_) mat:map(rect,r_)
mat:reim(re_, im_) mat:real(re_), mat:imag(im_)

The method mat:cplx() has a special implementation that allows to used it without a real part, e.g. im.
cplx(nil, im, r_).

The method mat:conjugate() is also available as an alias for mat:conj().

5.10 Mapping Error-like Methods

The following table lists the methods built from the application of mat:map() to the error-like functions
from the module MAD.gmath for matrix and cmatrix.

Functions Equivalent Mapping
mat:erf([rtol_,]r_) mat:map2(rtol_,erf,r_)
mat:erfc([rtol_,]r_) mat:map2(rtol_,erfc,r_)
mat:erfcx([rtol_,]r_) mat:map2(rtol_,erfcx,r_)
mat:erfi([rtol_,]r_) mat:map2(rtol_,erfi,r_)
mat:wf([rtol_,]r_) mat:map2(rtol_,wf,r_)

5.11 Mapping Vector-like Methods

The following table lists the methods built from the application of mat:map2() to the vector-like functions
from the module MAD.gfunc for matrix, cmatrix, and imatrix.

36. SCANNING METHODS 226

Functions Equivalent Mapping
mat:emul(mat2,r_) mat:map2(mat2,mul,r_)
mat:ediv(mat2,r_) mat:map2(mat2,div,r_)
mat:emod(mat2,r_) mat:map2(mat2,mod,r_)
mat:epow(mat2,r_) mat:map2(mat2,pow,r_)

5.12 Folding Methods

The following table lists the methods built from the application of mat:foldl() to the functions from the
module MAD.gmath for matrix, cmatrix, and imatrix. The methods mat:min() and mat:max() are not
available for cmatrix.

Functions Equivalent Folding
mat:all(p,d_,r_) mat:foldl(all(p),false,d_,r_)
mat:any(p,d_,r_) mat:foldl(any(p),true,d_,r_)
mat:min(d_,r_) mat:foldl(min,nil,d_,r_)
mat:max(d_,r_) mat:foldl(max,nil,d_,r_)
mat:sum(d_,r_) mat:foldl(add,nil,d_,r_)
mat:prod(d_,r_) mat:foldl(mul,nil,d_,r_)
mat:sumsqr(d_,r_) mat:foldl(sumsqrl,0,d_,r_)
mat:sumabs(d_,r_) mat:foldl(sumabsl,0,d_,r_)
mat:minabs(d_,r_) mat:foldl(minabsl,inf,d_,r_)
mat:maxabs(d_,r_) mat:foldl(maxabsl,0,d_,r_)

Where any() and all() are functions that bind the predicate p to the propagation of the logical AND and
the logical OR respectively, that can be implemented like:

– all = \p -> \r,x -> lbool(land(r, p(x)))

– any = \p -> \r,x -> lbool(lor (r, p(x)))

5.13 Scanning Methods

The following table lists the methods built from the application of mat:scanl() and mat:scanr()
to the functions from the module MAD.gmath for matrix and cmatrix. The methods mat:accmin(),
mat:raccmin(), mat:accmax() and mat:raccmax() are not available for cmatrix.

36. MATRIX FUNCTIONS 227

Functions Equivalent Scanning
mat:accmin(d_,r_) mat:scanl(min,nil,d_,r_)
mat:accmax(d_,r_) mat:scanl(max,nil,d_,r_)
mat:accsum(d_,r_) mat:scanl(add,nil,d_,r_)
mat:accprod(d_,r_) mat:scanl(mul,nil,d_,r_)
mat:accsumsqr(d_,r_) mat:scanl(sumsqrl,0,d_,r_)
mat:accsumabs(d_,r_) mat:scanl(sumabsl,0,d_,r_)
mat:accminabs(d_,r_) mat:scanl(minabsl,inf,d_,r_)
mat:accmaxabs(d_,r_) mat:scanl(maxabsl,0,d_,r_)
mat:raccmin(d_,r_) mat:scanr(min,nil,d_,r_)
mat:raccmax(d_,r_) mat:scanr(max,nil,d_,r_)
mat:raccsum(d_,r_) mat:scanr(add,nil,d_,r_)
mat:raccprod(d_,r_) mat:scanr(mul,nil,d_,r_)
mat:raccsumsqr(d_,r_) mat:scanr(sumsqrr,0,d_,r_)
mat:raccsumabs(d_,r_) mat:scanr(sumabsr,0,d_,r_)
mat:raccminabs(d_,r_) mat:scanr(minabsr,inf,d_,r_)
mat:raccmaxabs(d_,r_) mat:scanr(maxabsr,0,d_,r_)

The method mat:accumulate() is also available as an alias for mat:accsum().

5.14 Matrix Functions

The following table lists the methods built from the application of mat:mfun() to the real-like functions
from the module MAD.gmath for matrix and cmatrix.

36. OPERATOR-LIKE METHODS 228

Functions Equivalent Matrix Function
mat:macos() mat:mfun(acos)
mat:macosh() mat:mfun(acosh)
mat:macot() mat:mfun(acot)
mat:macoth() mat:mfun(acoth)
mat:masin() mat:mfun(asin)
mat:masinh() mat:mfun(asinh)
mat:masinc() mat:mfun(asinc)
mat:masinhc() mat:mfun(asinhc)
mat:matan() mat:mfun(atan)
mat:matanh() mat:mfun(atanh)
mat:mcos() mat:mfun(cos)
mat:mcosh() mat:mfun(cosh)
mat:mcot() mat:mfun(cot)
mat:mcoth() mat:mfun(coth)
mat:mexp() mat:mfun(exp)
mat:mlog() mat:mfun(log)
mat:mlog10() mat:mfun(log10)
mat:msin() mat:mfun(sin)
mat:msinc() mat:mfun(sinc)
mat:msinh() mat:mfun(sinh)
mat:msinhc() mat:mfun(sinhc)
mat:msqrt() mat:mfun(sqrt)
mat:mtan() mat:mfun(tan)
mat:mtanh() mat:mfun(tanh)

5.15 Operator-like Methods

mat:unm(r_)
Equivalent to -mat with the possibility to place the result in r.

mat:add(a, r_)
Equivalent to mat + a with the possibility to place the result in r.

mat:sub(a, r_)
Equivalent to mat - a with the possibility to place the result in r.

mat:mul(a, r_)
Equivalent to mat * a with the possibility to place the result in r.

mat:tmul(mat2, r_)
Equivalent to mat:t() * mat2 with the possibility to place the result in r.

mat:mult(mat2, r_)
Equivalent to mat * mat2:t() with the possibility to place the result in r.

36. SPECIAL METHODS 229

mat:dmul(mat2, r_)
Equivalent to mat:getdiag():diag() * mat2 with the possibility to place the result in r. If mat
is a vector, it will be interpreted as the diagonal of a square matrix like in mat:diag(), i.e. omitting
mat:getdiag() is the previous expression.

mat:muld(mat2, r_)
Equivalent to mat * mat2:getdiag():diag() with the possibility to place the result in r. If mat2
is a vector, it will be interpreted as the diagonal of a square matrix like in mat2:diag(), i.e. omitting
mat2:getdiag() is the previous expression.

mat:div(a, [r_,] rcond_)
Equivalent to mat / a with the possibility to place the result in r, and to specify the conditional
number rcond used by the solver to determine the effective rank of non-square systems. Default:
rcond = eps.

mat:inv([r_,] rcond_)
Equivalent to mat.div(1, mat, r_, rcond_).

mat:pow(n, r_)
Equivalent to mat ^ n with the possibility to place the result in r.

mat:eq(a, tol_)
Equivalent to mat == a with the possibility to specify the tolerance tol of the comparison. Default:
tol_ = 0.

mat:concat(mat2, [d_,] r_)
Equivalent to mat .. mat2 with the possibility to place the result in r and to specify the direction of
the concatenation:

– If d = 'vec', it concatenates the matrices (appended as vectors)
– If d = 'row', it concatenates the rows (horizontal)
– If d = 'col', it concatenates the columns (vectical)

Default: d_ = 'row'.

5.16 Special Methods

mat:transpose([c_,] r_)
mat:t([c_,] r_)

Return a real, complex or integer matrix or r resulting from the conjugate transpose𝑀* of the matrix
mat unless c = false which disables the conjugate to get 𝑀 𝜏 . If r = 'in' then it is assigned mat.

mat:trace()

mat:tr()

Return the Trace of the real or complex mat equivalent to mat:sum('diag').

mat:inner(mat2)

https://en.wikipedia.org/wiki/Trace_(linear_algebra)

36. SPECIAL METHODS 230

mat:dot(mat2)
Return the Inner Product of the two real or complex matrices mat and mat2 with compatible sizes, i.e.
return 𝑀*.𝑀2 interpreting matrices as vectors. Note that multiple dot products, i.e. not interpreting
matrices as vectors, can be achieved with mat:tmul().

mat:outer(mat2, r_)
Return the real or complex matrix resulting from the Outer Product of the two real or complex matrices
mat and mat2, i.e. return 𝑀.𝑀*

2 interpreting matrices as vectors.

mat:cross(mat2, r_)
Return the real or complex matrix resulting from the Cross Product of the two real or complex matrices
mat and mat2with compatible sizes, i.e. return𝑀×𝑀2 interpreting matrices as a list of [3×1] column
vectors.

mat:mixed(mat2, mat3, r_)
Return the real or complex matrix resulting from the Mixed Product of the three real or complex
matrices mat, mat2 and mat3 with compatible sizes, i.e. return𝑀*.(𝑀2×𝑀3) interpreting matrices
as a list of [3× 1] column vectors.

mat:norm()

Return the Frobenius norm of the matrix ‖𝑀‖2. Other 𝐿𝑝 matrix norms and variants can be eas-
ily calculated using already provided methods, e.g. 𝐿1 = mat:sumabs('col'):max(), 𝐿∞ =
mat:sumabs('row'):max(), and 𝐿2 = mat:svd():max().

mat:dist(mat2)
Equivalent to (mat - mat2):norm().

mat:unit()

Return the scaled matrix mat to the unit norm equivalent to mat:div(mat:norm(), mat).

mat:center(d_)
Return the centered matrix mat to have zero mean equivalent to mat:sub(mat:mean(),mat). The
direction d indicates how the centering must be performed:

– If d = 'vec', it centers the entire matrix by substracting its mean.
– If d = 'row', it centers each row by substracting their mean.
– If d = 'col' , it centers each column by substracting their mean.
– If d = 'diag', it centers the diagonal by substracting its mean.

Default: d_ = 'vec'.

mat:angle(mat2, n_)
Return the angle between the two real or complex vectors mat and mat2 using the method
mat:inner(). If n is provided, the sign of mat:mixed(mat2, n) is used to define the angle in
[−𝜋, 𝜋], otherwise it is defined in [0, 𝜋].

mat:minmax(abs_)
Return the minimum and maximum values of the elements of the real, complex or integer matrix mat.
If abs = true, it returns the minimum and maximum absolute values of the elements. Default: abs_
= false.

https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Outer_product
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Triple_product
https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

36. SOLVERS AND DECOMPOSITIONS 231

mat:iminmax(abs_)
Return the two vector-like indexes of the minimum and maximum values of the elements of the real,
complex or integer matrix mat. If abs = true, it returns the indexes of the minimum and maximum
absolute values of the elements. Default: abs_ = false.

mat:mean()

Equivalent to mat:sum()/#mat, i.e. interpreting the matrix as a vector.

mat:variance()

Equivalent to (mat - mat:mean()):sumsqr()/(#mat-1), i.e. return the unbiased estimator of the
variance with second order Bessel’s correction, interpreting the matrix as a vector.

mat:ksum()

mat:kdot(mat2)
Same as mat:sum() and mat:dot() respectively, except that they use the more accurate Kahan
Babushka Neumaier algorithm for the summation, e.g. the sum of the elements of the vector
[1, 10100, 1,−10100] should return 0 with sum() and the correct answer 2 with ksum().

mat:kadd(a, x)
Return the real or complex matrix mat filled with the linear combination of the compatible matrices
stored in x times the scalars stored in a, i.e. mat = a[1]*x[1] + a[2]*x[2] ...

mat:eval(x0)
Return the evaluation of the real or complex matrix mat at the value x0, i.e. interpreting the matrix
as a vector of polynomial coefficients of increasing orders in x evaluated at x = x0 using Horner’s
method.

mat:sympconj(r_)
mat:bar(r_)

Return a real or complex matrix or r resulting from the symplectic conjugate of the matrix mat, with
𝑀̄ = −𝑆2𝑛𝑀*𝑆2𝑛, and 𝑀−1 = 𝑀̄ if 𝑀 is symplectic. If r = 'in' then it is assigned mat.

mat:symperr(r_)
Return the norm of the symplectic deviation matrix given by 𝑀*𝑆2𝑛𝑀 − 𝑆2𝑛 of the real or complex
matrix mat. If r is provided, it is filled with the symplectic deviation matrix.

mat:dif(mat2, r_)
Return a real or complex matrix or r resulting from the term-by-term difference between the matrices
mat and mat2 using the absolute difference for values with magnitude below 1 and the relative differ-
ence otherwise, i.e. 𝑟𝑖 = (𝑥𝑖 − 𝑦𝑖)/max(|𝑥𝑖|, 1).

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://en.wikipedia.org/wiki/Horner%27s_method
https://en.wikipedia.org/wiki/Horner%27s_method

36. SOLVERS AND DECOMPOSITIONS 232

5.17 Solvers and Decompositions

Except for nsolve(), the solvers hereafter are wrappers around the library Lapack2.

mat:solve(b, rcond_)
Return the real or complex [𝑛 × 𝑝] matrix 𝑥 as the minimum-norm solution of the linear least square
problem min ‖𝐴𝑥−𝐵‖ where𝐴 is the real or complex [𝑚×𝑛] matrix mat and𝐵 is a [𝑚×𝑝] matrix b
of the same type as mat, using LU, QR or LQ factorisation depending on the shape of the system. The
conditional number rcond is used by the solver to determine the effective rank of non-square system.
This method also returns the rank of the system. Default: rcond_ = eps.

mat:ssolve(b, rcond_)
Return the real or complex [𝑛 × 𝑝] matrix 𝑥 as the minimum-norm solution of the linear least square
problem min ‖𝐴𝑥−𝐵‖ where 𝐴 is the real or complex [𝑚×𝑛] matrix mat and𝐵 is a [𝑚× 𝑝] matrix
b of the same type as mat, using SVD factorisation. The conditional number rcond is used by the
solver to determine the effective rank of the system. This method also returns the rank of the system
followed by the real [min(𝑚,𝑛)× 1] vector of singluar values. Default: rcond_ = eps.

mat:gsolve(b, c, d)
Return the real or complex [𝑛 × 1] vector x as the minimum-norm solution of the linear least square
problem min ‖𝐴𝑥−𝐶‖ under the constraint 𝐵𝑥 = 𝐷 where 𝐴 is the real or complex [𝑚× 𝑛] matrix
mat, 𝐵 is a [𝑝× 𝑛] matrix b, 𝐶 is a [𝑚× 1] vector c and 𝐷 is a [𝑝× 1] vector d, all of the same type
as mat, using QR or LQ factorisation depending on the shape of the system. This method also returns
the norm of the residues and the status info.

mat:gmsolve(b, d)
Return the real or complex [𝑛× 1] vector x and [𝑝× 1] matrix y as the minimum-norm solution of the
linear Gauss-Markov problem min𝑥 ‖𝑦‖ under the constraint 𝐴𝑥+ 𝐵𝑦 = 𝐷 where 𝐴 is the [𝑚× 𝑛]
real or complex matrix mat, 𝐵 is a [𝑚 × 𝑝] matrix b, and 𝐷 is a [𝑚 × 1] vector d, both of the same
type as mat, using QR or LQ factorisation depending on the shape of the system. This method also
returns the status info.

mat:nsolve(b, nc_, tol_)
Return the real [𝑛 × 1] vector x (of correctors kicks) as the minimum-norm solution of the linear
(best-kick) least square problem min ‖𝐴𝑥 − 𝐵‖ where 𝐴 is the real [𝑚 × 𝑛] (response) matrix mat
and 𝐵 is a real [𝑚× 1] vector b (of monitors readings), using the MICADO3 algorithm based on the
Householder-Golub method [MICADO]. The argument nc is the maximum number of correctors to
use with 0 < 𝑛𝑐 ≤ 𝑛 and the argument tol is a convergence threshold (on the residues) to stop the
(orbit) correction if ‖𝐴𝑥−𝐵‖ ≤ 𝑚× tol. This method also returns the updated number of correctors
𝑛𝑐 effectively used during the correction followed by the real [𝑚× 1] vector of residues. Default: nc_
= ncol, tol_ = eps.

2 The solvers are based, among others, on the following Lapack drivers:
– dgesv() and zgesv() for LU factorization.
– dgelsy() and zgelsy() for QR or LQ factorization.
– dgelsd() and zgelsd() for SVD factorisation.
– dgees() and zgees() for Schur factorisation.
– dgglse() and zgglse() for equality-constrained linear Least Squares problems.
– dggglm() and zggglm() for general Gauss-Markov linear model problems.

3 MICADO stands for “Minimisation des CArrés des Distortions d’Orbite” in french.

https://netlib.org/lapack/explore-html/index.html

36. FOURIER TRANSFORMS AND CONVOLUTIONS 233

mat:pcacnd(ns_, rcond_)
Return the integer column vector ic containing the indexes of the columns to remove from the real
or complex [𝑚 × 𝑛] matrix mat using the Principal Component Analysis. The argument ns is the
maximum number of singular values to consider and rcond is the conditioning number used to select
the singular values versus the largest one, i.e. consider the ns larger singular values 𝜎𝑖 such that
𝜎𝑖 > 𝜎max×rcond. This method also returns the real [min(𝑚,𝑛) × 1] vector of singluar values.
Default: ns_ = ncol, rcond_ = eps.

mat:svdcnd(ns_, rcond_, tol_)
Return the integer column vector ic containing the indexes of the columns to remove from the real or
complex [𝑚×𝑛] matrix mat based on the analysis of the right matrix 𝑉 from the SVD decomposition
𝑈𝑆𝑉 . The argument ns is the maximum number of singular values to consider and rcond is the
conditioning number used to select the singular values versus the largest one, i.e. consider the ns
larger singular values 𝜎𝑖 such that 𝜎𝑖 > 𝜎max×rcond. The argument tol is a threshold similar to
rcond used to reject components in 𝑉 that have similar or opposite effect than components already
encountered. This method also returns the real [min(𝑚,𝑛) × 1] vector of singluar values. Default:
ns_ = min(nrow,ncol), rcond_ = eps.

mat:svd()

Return the real vector of the singular values and the two real or complex matrices resulting from the
SVD factorisation of the real or complex matrix mat, followed the status info. The singular values
are positive and sorted in decreasing order of values, i.e. largest first.

mat:eigen(vr_, vl_)
Return the complex vector filled with the eigenvalues followed by the by the status info and the two
optional real or complex matrices vr and vl containing the right and the transposed left eigenvectors
resulting from the Eigen Decomposition of the real or complex square matrix mat. The eigenvectors
are normalized to have unit Euclidean norm and their largest component real, and satisfy 𝐴𝑣𝑟 = 𝜆𝑣𝑟
and 𝑣𝜏𝑙 𝐴 = 𝜆𝑣𝜏𝑙 .

mat:det()

Return the Determinant of the real or complex square matrix mat using LU factorisation for better
numerical stability, followed by the status info.

mat:mfun(fun)
Return the real or complex matrix resulting from the matrix function fun applied to the real or complex
matrix mat. So far, mat:mfun() uses the eigen decomposition of the matrix mat, which must be Diag-
onalizable. See the section Matrix Functions for the list of matrix functions already provided. Future
versions of this method may be extended to use the more general Schur-Parlett algorithm [MATFUN],
and other specialized versions for msqrt(), mpow, mexp, and mlog may be implemented too.

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Diagonalizable_matrix
https://en.wikipedia.org/wiki/Diagonalizable_matrix

36. FOURIER TRANSFORMS AND CONVOLUTIONS 234

5.18 Fourier Transforms and Convolutions

The methods described is this section are based on the FFTW and NFFT libraries.

mat:fft([d_,] r_)
Return the complex [𝑛𝑟 × 𝑛𝑐] vector, matrix or r resulting from the 1D or 2D Fourier Transform of
the real or complex [𝑛𝑟 × 𝑛𝑐] vector or matrix mat in the direction given by d:

– If d = 'vec', it returns a 1D vector FFT of length 𝑛𝑟𝑛𝑐.
– If d = 'row', it returns 𝑛𝑟 1D row FFTs of length 𝑛𝑐.
– If d = 'col', it returns 𝑛𝑐 1D column FFTs of length 𝑛𝑟.
– otherwise, it returns a 2D FFT of sizes [𝑛𝑟 × 𝑛𝑐].

mat:ifft([d_,] r_)
Return the complex [𝑛𝑟×𝑛𝑐] vector, matrix or r resulting from the 1D or 2D inverse Fourier Transform
of the complex [𝑛𝑟 × 𝑛𝑐] vector or matrix mat. See mat:fft() for the direction d.

mat:rfft([d_,] r_)
Return the complex [𝑛𝑟×⌊𝑛𝑐/2+1⌋] vector, matrix or r resulting from the 1D or 2D Fourier Transform
of the real [𝑛𝑟 × 𝑛𝑐] vector or matrix mat. This method used an optimized version of the FFT for real
data, which is about twice as fast and compact as the method mat:fft(). See mat:fft() for the
direction d.

mat:irfft([d_,] r)
Return the real [𝑛𝑟 × 𝑛𝑐] vector, matrix or r resulting from the 1D or 2D inverse Fourier Transform
of the complex [𝑛𝑟 ×⌊𝑛𝑐/2+ 1⌋] vector or matrix mat as computed by the method mat:rfft(). See
mat:fft() for the direction d. Note that r must be provided to specify the correct 𝑛𝑐 of the result.

mat:nfft(p_, r_)
Return the complex vector, matrix or r resulting from the 1D or 2D Nonequispaced Fourier Transform
of the real or complex vector or matrix mat respectively at p time nodes.

mat:infft(p_, r_)
Return the complex vector, matrix or r resulting from the 1D or 2D Nonequispaced inverse Fourier
Transform of the real or complex vector or matrix mat respectively at p frequency nodes.

mat:conv([y_,] [d_], r_)
Return the real or complex vector, matrix or r resulting from the 1D or 2D Convolution between
the compatible real or complex vectors or matrices mat and y respectively. See mat:fft() for the
direction d. Default: y = mat.

mat:corr([y_,] [d_], r_)
Return the real or complex vector, matrix or r resulting from the 1D or 2D Correlation between the
compatible real or complex vectors or matrices mat and y respectively. See mat:fft() for the direc-
tion d. Default: y = mat.

mat:covar([y_,] [d_,] r_)
Return the real or complex vector, matrix or r resulting from the 1D or 2D Covariance between the
compatible real or complex vectors or matrices mat and y respectively. See mat:fft() for the direc-
tion d. Default: y = mat.

https://fftw.org
https://www-user.tu-chemnitz.de/~potts/nfft/
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Covariance

36. ROTATIONS 235

mat:zpad(nr, nc, d_)
Return the real or complex vector or matrix resulting from the zero padding of the matrix mat extended
to the sizes nr and nc, following the direction d:

– If d = 'vec', it pads the zeros at the end of the matrix equivalent x:same(nr,nc)
:setvec(1..#x,x), i.e. interpreting the matrix as a vector.

– If d = 'row', it pads the zeros at the end of the rows equivalent x:same(x.nrow,nc)
:setsub(1..x.nrow,1..x.ncol,x), i.e. ignoring nr.

– If d = 'col', it pads the zeros at the end of the columns equivalent x:same(nr,x.ncol)
:setsub(1..x.nrow,1..x.ncol,x), i.e. ignoring nc.

– otherwise, it pads the zeros at the end of the rows and the columns equivalent to x:same(nr,nc)
:setsub(1..x.nrow,1..x.ncol,x).

If the zero padding does not change the size of mat, the orignal mat is returned unchanged.

5.19 Rotations

This section describe methods dealing with 2D and 3D rotations (see Rotation Matrix) with angles in ra-
dians and trigonometric (counter-clockwise) direction for a right-handed frame, and where the following
convention hold: ax = -phi is the elevation angle, ay = theta is the azimuthal angle and az = psi is
the roll/tilt angle.

mat:rot(a)
Return the [2× 2] real matrix mat filled with a 2D rotation of angle a.

mat:rotx(a)
mat:roty(a)
mat:rotz(a)

Return the [3 × 3] real matrix mat filled with a 3D rotation of angle a around the x-axis, y-axis and
z-axis respectively.

mat:rotxy(ax, ay, inv_)
mat:rotxz(ax, az, inv_)
mat:rotyx(ay, ax, inv_)
mat:rotyz(ay, az, inv_)
mat:rotzx(az, ax, inv_)
mat:rotzy(az, ay, inv_)

Return the [3 × 3] real matrix mat filled with a 3D rotation of the first angle argument ax, ay or az
around the x-axis, y-axis or z-axis respectively followed by another 3D rotation of the second angle
argument ax, ay or az around the x-axis, y-axis or z-axis respectively of the frame rotated by the first
rotation. If inv is true, the returned matrix is the inverse rotation, i.e. the transposed matrix.

mat:rotxyz(ax, ay, az, inv_)
mat:rotxzy(ax, az, ay, inv_)
mat:rotyxz(ay, ax, az, inv_)
mat:rotyzx(ay, az, ax, inv_)
mat:rotzxy(az, ax, ay, inv_)

https://en.wikipedia.org/wiki/Rotation_matrix

36. CONVERSIONS 236

mat:rotzyx(az, ay, ax, inv_)
Return the [3 × 3] real matrix mat filled with a 3D rotation of the first angle argument ax, ay or az
around the x-axis, y-axis or z-axis respectively followed by another 3D rotation of the second angle
argument ax, ay or az around the x-axis, y-axis or z-axis respectively of the frame rotated by the first
rotation, and followed by a last 3D rotation of the third angle argument ax, ay or az around the x-axis,
y-axis or z-axis respectively of the frame already rotated by the two first rotations. If inv is true, the
returned matrix is the inverse rotations, i.e. the transposed matrix.

mat:torotxyz(inv_)
mat:torotxzy(inv_)
mat:torotyxz(inv_)
mat:torotyzx(inv_)
mat:torotzxy(inv_)
mat:torotzyx(inv_)

Return three real number representing the three angles ax, ay and az (always in this order) of the 3D
rotations stored in the [3 × 3] real matrix mat by the methods with corresponding names. If inv is
true, the inverse rotations are returned, i.e. extracted from the transposed matrix.

mat:rotv(v, av, inv_)
Return the [3 × 3] real matrix mat filled with a 3D rotation of angle av around the axis defined by
the 3D vector-like v (see Axis-Angle representation). If inv is true, the returned matrix is the inverse
rotation, i.e. the transposed matrix.

mat:torotv(v_, inv_)
Return a real number representing the angle of the 3D rotation around the axis defined by a 3D vector
as stored in the [3 × 3] real matrix mat by the method mat:rotv(). If the iterable v is provided, it
is filled with the components of the unit vector that defines the axis of the rotation. If inv is true, the
inverse rotation is returned, i.e. extracted from the transposed matrix.

mat:rotq(q, inv_)
Return the [3×3] real matrix mat filled with a 3D rotation defined by the quaternion q (see Axis-Angle
representation). If inv is true, the returned matrix is the inverse rotation, i.e. the transposed matrix.

mat:torotq(q_, inv_)
Return a quaternion representing the 3D rotation as stored in the [3×3] real matrix mat by the method
mat:rotq(). If the iterable q is provided, it is filled with the components of the quaternion otherwise
the quaternion is returned in a list of length 4. If inv is true, the inverse rotation is returned, i.e.
extracted from the transposed matrix.

5.20 Conversions

mat:tostring(sep_, lsep_)
Return the string containing the real, complex or integer matrix converted to string. The argument sep
and lsep are used as separator for columns and rows respectively. The elements values are formated
using tostring() that follows the option.numfmt string format for real numbers. Default: sep =
" ", lsep = "\n".

https://en.wikipedia.org/wiki/Axis\T1\textendash {}angle_representation
https://en.wikipedia.org/wiki/Axis\T1\textendash {}angle_representation
https://en.wikipedia.org/wiki/Axis\T1\textendash {}angle_representation

36. OPERATORS 237

mat:totable([d_,] r_)
Return the table or r containing the real, complex or integer matrix converted to tables, i.e. one per
row unless mat is a vector or the direction d = 'vec'.

5.21 Input and Output

mat:write(filename_, name_, eps_, line_, nl_)
Return the real, complex or integer matrix after writing it to the file filename opened with MAD.
utility.openfile(). The content of the matrix mat is preceded by a header containing enough
information to read it back. If name is provided, it is part of the header. If line = 'line', the
matrix is displayed on a single line with rows separated by a semicolumn, otherwise it is displayed on
multiple lines separated by nl. Elements with absolute value below eps are displayed as zeros. The
formats defined by MAD.option.numfmt and MAD.option.intfmt are used to format numbers of
matrix, cmatrix and imatrix respectively. Default: filename_ = io.stdout, name_ = '', eps_ =
0, line_ = nil, nl_ = '\n'.

mat:print(name_, eps_, line_, nl_)
Equivalent to mat:write(nil, name_, eps_, line_, nl_).

mat:read(filename_)
Return the real, complex or integer matrix read from the file filename opened with MAD.utility.
openfile(). Note that the matrix mat is only used to call the method :read() and has no impact
on the type and sizes of the returned matrix fully characterized by the content of the file. Default:
filename_ = io.stdin.

6 Operators

#mat

Return the size of the real, complex or integer matrix mat, i.e. the number of elements interpreting the
matrix as a vector.

mat[n]

Return the value of the element at index n of the real, complex or integer matrix mat for 1 <= n <=
#mat, i.e. interpreting the matrix as a vector, nil otherwise.

mat[n] = v

Assign the value v to the element at index n of the real, complex or integer matrix mat for 1 <= n <=
#mat, i.e. interpreting the matrix as a vector, otherwise raise an “out of bounds” error.

-mat

Return a real, complex or integer matrix resulting from the unary minus applied individually to all
elements of the matrix mat.

num + mat

mat + num

36. OPERATORS 238

mat + mat2

Return a matrix resulting from the sum of the left and right operands that must have compatible sizes.
If one of the operand is a scalar, the operator will be applied individually to all elements of the matrix.

num + cmat

cpx + mat

cpx + cmat

mat + cpx

mat + cmat

cmat + num

cmat + cpx

cmat + mat

cmat + cmat2

Return a cmatrix resulting from the sum of the left and right operands that must have compatible sizes.
If one of the operand is a scalar, the operator will be applied individually to all elements of the matrix.

idx + imat

imat + idx

imat + imat

Return a imatrix resulting from the sum of the left and right operands that must have compatible sizes.
If one of the operand is a scalar, the operator will be applied individually to all elements of the matrix.

num - mat

mat - num

mat - mat2

Return a matrix resulting from the difference of the left and right operands that must have compatible
sizes. If one of the operand is a scalar, the operator will be applied individually to all elements of the
matrix.

num - cmat

cpx - mat

cpx - cmat

mat - cpx

mat - cmat

cmat - num

cmat - cpx

cmat - mat

cmat - cmat2

Return a cmatrix resulting from the difference of the left and right operands that must have compatible
sizes. If one of the operand is a scalar, the operator will be applied individually to all elements of the
matrix.

idx - imat

imat - idx

36. OPERATORS 239

imat - imat

Return a imatrix resulting from the difference of the left and right operands that must have compatible
sizes. If one of the operand is a scalar, the operator will be applied individually to all elements of the
matrix.

num * mat

mat * num

mat * mat2

Return a matrix resulting from the product of the left and right operands that must have compatible
sizes. If one of the operand is a scalar, the operator will be applied individually to all elements of the
matrix. If the two operands are matrices, the mathematical matrix multiplication is performed.

num * cmat

cpx * mat

cpx * cmat

mat * cpx

mat * cmat

cmat * num

cmat * cpx

cmat * mat

cmat * cmat2

Return a cmatrix resulting from the product of the left and right operands that must have compatible
sizes. If one of the operand is a scalar, the operator will be applied individually to all elements of the
matrix. If the two operands are matrices, the mathematical matrix multiplication is performed.

idx * imat

imat * idx

Return a imatrix resulting from the product of the left and right operands that must have compatible
sizes. If one of the operand is a scalar, the operator will be applied individually to all elements of the
matrix.

num / mat

mat / num

mat / mat2

Return a matrix resulting from the division of the left and right operands that must have compatible
sizes. If the right operand is a scalar, the operator will be applied individually to all elements of the
matrix. If the left operand is a scalar the operation x/Y is converted to x (I/Y) where I is the identity
matrix with compatible sizes. If the right operand is a matrix, the operation X/Y is performed using a
system solver based on LU, QR or LQ factorisation depending on the shape of the system.

num / cmat

cpx / mat

cpx / cmat

mat / cpx

mat / cmat

https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication

36. OPERATORS 240

cmat / num

cmat / cpx

cmat / mat

cmat / cmat2

Return a cmatrix resulting from the division of the left and right operands that must have compatible
sizes. If the right operand is a scalar, the operator will be applied individually to all elements of the
matrix. If the left operand is a scalar the operation x/Y is converted to x (I/Y) where I is the identity
matrix with compatible sizes. If the right operand is a matrix, the operation X/Y is performed using a
system solver based on LU, QR or LQ factorisation depending on the shape of the system.

imat / idx

Return a imatrix resulting from the division of the left and right operands, where the operator will be
applied individually to all elements of the matrix.

mat % num

mat % mat

Return a matrix resulting from the modulo between the elements of the left and right operands that
must have compatible sizes. If the right operand is a scalar, the operator will be applied individually
to all elements of the matrix.

cmat % num

cmat % cpx

cmat % mat

cmat % cmat

Return a cmatrix resulting from the modulo between the elements of the left and right operands that
must have compatible sizes. If the right operand is a scalar, the operator will be applied individually
to all elements of the matrix.

imat % idx

imat % imat

Return a imatrix resulting from the modulo between the elements of the left and right operands that
must have compatible sizes. If the right operand is a scalar, the operator will be applied individually
to all elements of the matrix.

mat ^ n

cmat ^ n

Return a matrix or cmatrix resulting from n products of the square input matrix by itself. If n is
negative, the inverse of the matrix is used for the product.

num == mat

num == cmat

num == imat

cpx == mat

cpx == cmat

mat == num

mat == cpx

36. C API 241

mat == mat2

mat == cmat

cmat == num

cmat == cpx

cmat == mat

cmat == cmat2

imat == num

imat == imat2

Return false if the left and right operands have incompatible sizes or if any element differ in a one-
to-one comparison, true otherwise. If one of the operand is a scalar, the operator will be applied
individually to all elements of the matrix.

mat .. mat2

mat .. imat

imat .. mat

Return a matrix resulting from the row-oriented (horizontal) concatenation of the left and right oper-
ands. If the first element of the right operand mat (third case) is an integer, the resulting matrix will
be a imatrix instead.

mat .. cmat

imat .. cmat

cmat .. mat

cmat .. imat

cmat .. cmat2

Return a cmatrix resulting from the row-oriented (horizontal) concatenation of the left and right oper-
ands.

imat .. imat2

Return a imatrix resulting from the row-oriented (horizontal) concatenation of the left and right oper-
ands.

7 Iterators

ipairs(mat)
Return an ipairs iterator suitable for generic for loops. The returned values are those given by mat[i].

36. VECTOR 242

8 C API

This C Application Programming Interface describes only the C functions declared in the scripting language
and used by the higher level functions and methods presented before in this chapter. For more functions and
details, see the C headers. The const vectors and matrices are inputs, while the non-const vectors and
matrices are outpouts or are modified inplace.

8.1 Vector

void mad_vec_fill(num_t x, num_t r[], ssz_t n)
void mad_cvec_fill(cpx_t x, cpx_t r[], ssz_t n)
void mad_ivec_fill(idx_t x, idx_t r[], ssz_t n)

Return the vector r of size n filled with the value of x.

void mad_vec_roll(num_t x[], ssz_t n, int nroll)
void mad_cvec_roll(cpx_t x[], ssz_t n, int nroll)
void mad_ivec_roll(idx_t x[], ssz_t n, int nroll)

Roll in place the values of the elements of the vector x of size n by nroll.

void mad_vec_copy(const num_t x[], num_t r[], ssz_t n)
void mad_vec_copyv(const num_t x[], cpx_t r[], ssz_t n)
void mad_cvec_copy(const cpx_t x[], cpx_t r[], ssz_t n)
void mad_ivec_copy(const idx_t x[], idx_t r[], ssz_t n)

Fill the vector r of size n with the content of the vector x.

void mad_vec_minmax(const num_t x[], log_t absf, idx_t r[2], ssz_t n)
void mad_cvec_minmax(const cpx_t x[], idx_t r[2], ssz_t n)
void mad_ivec_minmax(const idx_t x[], log_t absf, idx_t r[2], ssz_t n)

Return in r the indexes of the minimum and maximum values of the elements of the vector x of size
n. If absf = TRUE, the function abs() is applied to the elements before comparison.

num_t mad_vec_eval(const num_t x[], num_t x0, ssz_t n)
void mad_cvec_eval_r(const cpx_t x[], num_t x0_re, num_t x0_im, cpx_t *r, ssz_t n)

Return in r or directly the evaluation of the vector x of size n at the point x0 using Honer’s scheme.

num_t mad_vec_sum(const num_t x[], ssz_t n)
void mad_cvec_sum_r(const cpx_t x[], cpx_t *r, ssz_t n)
num_t mad_vec_ksum(const num_t x[], ssz_t n)
void mad_cvec_ksum_r(const cpx_t x[], cpx_t *r, ssz_t n)

Return in r or directly the sum of the values of the elements of the vector x of size n. The k versions
use the Neumaier variants of the Kahan sum.

num_t mad_vec_mean(const num_t x[], ssz_t n)

36. VECTOR 243

void mad_cvec_mean_r(const cpx_t x[], cpx_t *r, ssz_t n)
Return in r or directly the mean of the vector x of size n.

num_t mad_vec_var(const num_t x[], ssz_t n)
void mad_cvec_var_r(const cpx_t x[], cpx_t *r, ssz_t n)

Return in r or directly the unbiased variance with 2nd order correction of the vector x of size n.

void mad_vec_center(const num_t x[], num_t r[], ssz_t n)
void mad_cvec_center(const cpx_t x[], cpx_t r[], ssz_t n)

Return in r the centered, vector x of size n equivalent to x[i] - mean(x).

num_t mad_vec_norm(const num_t x[], ssz_t n)
num_t mad_cvec_norm(const cpx_t x[], ssz_t n)

Return the norm of the vector x of size n.

num_t mad_vec_dist(const num_t x[], const num_t y[], ssz_t n)
num_t mad_vec_distv(const num_t x[], const cpx_t y[], ssz_t n)
num_t mad_cvec_dist(const cpx_t x[], const cpx_t y[], ssz_t n)
num_t mad_cvec_distv(const cpx_t x[], const num_t y[], ssz_t n)

Return the distance between the vectors x and y of size n equivalent to norm(x - y).

num_t mad_vec_dot(const num_t x[], const num_t y[], ssz_t n)
void mad_cvec_dot_r(const cpx_t x[], const cpx_t y[], cpx_t *r, ssz_t n)
void mad_cvec_dotv_r(const cpx_t x[], const num_t y[], cpx_t *r, ssz_t n)
num_t mad_vec_kdot(const num_t x[], const num_t y[], ssz_t n)
void mad_cvec_kdot_r(const cpx_t x[], const cpx_t y[], cpx_t *r, ssz_t n)
void mad_cvec_kdotv_r(const cpx_t x[], const num_t y[], cpx_t *r, ssz_t n)

Return in r or directly the dot product between the vectors x and y of size n. The k versions use the
Neumaier variants of the Kahan sum.

void mad_vec_cplx(const num_t re_[], const num_t im_[], cpx_t r[], ssz_t n)
Convert the real and imaginary vectors re and im of size n into the complex vector r.

void mad_cvec_reim(const cpx_t x[], num_t re_[], num_t ri_[], ssz_t n)
Split the complex vector x of size n into the real vector re and the imaginary vector ri.

void mad_cvec_conj(const cpx_t x[], cpx_t r[], ssz_t n)
Return in r the conjugate of the complex vector x of size n.

void mad_vec_abs(const num_t x[], num_t r[], ssz_t n)
void mad_cvec_abs(const cpx_t x[], num_t r[], ssz_t n)

Return in r the absolute value of the vector x of size n.

void mad_vec_add(const num_t x[], const num_t y[], num_t r[], ssz_t n)
void mad_vec_addn(const num_t x[], num_t y, num_t r[], ssz_t n)
void mad_vec_addc_r(const num_t x[], num_t y_re, num_t y_im, cpx_t r[], ssz_t n)
void mad_cvec_add(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t n)

36. VECTOR 244

void mad_cvec_addv(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t n)
void mad_cvec_addn(const cpx_t x[], num_t y, cpx_t r[], ssz_t n)
void mad_cvec_addc_r(const cpx_t x[], num_t y_re, num_t y_im, cpx_t r[], ssz_t n)
void mad_ivec_add(const idx_t x[], const idx_t y[], idx_t r[], ssz_t n)
void mad_ivec_addn(const idx_t x[], idx_t y, idx_t r[], ssz_t n)

Return in r the sum of the scalar or vectors x and y of size n.

void mad_vec_sub(const num_t x[], const num_t y[], num_t r[], ssz_t n)
void mad_vec_subv(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t n)
void mad_vec_subn(const num_t y[], num_t x, num_t r[], ssz_t n)
void mad_vec_subc_r(const num_t y[], num_t x_re, num_t x_im, cpx_t r[], ssz_t n)
void mad_cvec_sub(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t n)
void mad_cvec_subv(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t n)
void mad_cvec_subn(const cpx_t y[], num_t x, cpx_t r[], ssz_t n)
void mad_cvec_subc_r(const cpx_t y[], num_t x_re, num_t x_im, cpx_t r[], ssz_t n)
void mad_ivec_sub(const idx_t x[], const idx_t y[], idx_t r[], ssz_t n)
void mad_ivec_subn(const idx_t y[], idx_t x, idx_t r[], ssz_t n)

Return in r the difference between the scalar or vectors x and y of size n.

void mad_vec_mul(const num_t x[], const num_t y[], num_t r[], ssz_t n)
void mad_vec_muln(const num_t x[], num_t y, num_t r[], ssz_t n)
void mad_vec_mulc_r(const num_t x[], num_t y_re, num_t y_im, cpx_t r[], ssz_t n)
void mad_cvec_mul(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t n)
void mad_cvec_mulv(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t n)
void mad_cvec_muln(const cpx_t x[], num_t y, cpx_t r[], ssz_t n)
void mad_cvec_mulc_r(const cpx_t x[], num_t y_re, num_t y_im, cpx_t r[], ssz_t n)
void mad_ivec_mul(const idx_t x[], const idx_t y[], idx_t r[], ssz_t n)
void mad_ivec_muln(const idx_t x[], idx_t y, idx_t r[], ssz_t n)

Return in r the product of the scalar or vectors x and y of size n.

void mad_vec_div(const num_t x[], const num_t y[], num_t r[], ssz_t n)
void mad_vec_divv(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t n)
void mad_vec_divn(const num_t y[], num_t x, num_t r[], ssz_t n)
void mad_vec_divc_r(const num_t y[], num_t x_re, num_t x_im, cpx_t r[], ssz_t n)
void mad_cvec_div(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t n)
void mad_cvec_divv(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t n)
void mad_cvec_divn(const cpx_t y[], num_t x, cpx_t r[], ssz_t n)
void mad_cvec_divc_r(const cpx_t y[], num_t x_re, num_t x_im, cpx_t r[], ssz_t n)
void mad_ivec_divn(const idx_t x[], idx_t y, idx_t r[], ssz_t n)

Return in r the division of the scalar or vectors x and y of size n.

36. MATRIX 245

void mad_ivec_modn(const idx_t x[], idx_t y, idx_t r[], ssz_t n)
Return in r the modulo of the integer vector x of size n by the integer y.

void mad_vec_kadd(int k, const num_t a[], const num_t *x[], num_t r[], ssz_t n)
void mad_cvec_kadd(int k, const cpx_t a[], const cpx_t *x[], cpx_t r[], ssz_t n)

Return in r the linear combination of the k vectors in x of size n scaled by the k scalars in a.

void mad_vec_fft(const num_t x[], cpx_t r[], ssz_t n)
void mad_cvec_fft(const cpx_t x[], cpx_t r[], ssz_t n)
void mad_cvec_ifft(const cpx_t x[], cpx_t r[], ssz_t n)

Return in the vector r the 1D FFT and inverse of the vector x of size n.

void mad_vec_rfft(const num_t x[], cpx_t r[], ssz_t n)
Return in the vector r of size n/2+1 the 1D real FFT of the vector x of size n.

void mad_cvec_irfft(const cpx_t x[], num_t r[], ssz_t n)
Return in the vector r of size n the 1D real FFT inverse of the vector x of size n/2+1.

void mad_vec_nfft(const num_t x[], const num_t x_node[], cpx_t r[], ssz_t n, ssz_t nr)
void mad_cvec_nfft(const cpx_t x[], const num_t x_node[], cpx_t r[], ssz_t n, ssz_t nr)

Return in the vector r of size nr the 1D non-equispaced FFT of the vectors x and x_node of size n.

void mad_cvec_infft(const cpx_t x[], const num_t r_node[], cpx_t r[], ssz_t n, ssz_t nx)
Return in the vector r of size n the 1D non-equispaced FFT inverse of the vector x of size nx and the
vector r_node of size n. Note that r_node here is the same vector as x_node in the 1D non-equispaced
forward FFT.

8.2 Matrix

void mad_mat_rev(num_t x[], ssz_t m, ssz_t n, int d)
void mad_cmat_rev(cpx_t x[], ssz_t m, ssz_t n, int d)
void mad_imat_rev(idx_t x[], ssz_t m, ssz_t n, int d)

Reverse in place the matrix x following the direction d in {0,1,2,3} for respectively the entire
matrix, each row, each column and the diagonal.

void mad_mat_center(num_t x[], ssz_t m, ssz_t n, int d)
void mad_cmat_center(cpx_t x[], ssz_t m, ssz_t n, int d)

Center in place the matrix x following the direction d in {0,1,2,3} for respectively the entire mat-
rix, each row, each column and the diagonal.

void mad_mat_roll(num_t x[], ssz_t m, ssz_t n, int mroll, int nroll)
void mad_cmat_roll(cpx_t x[], ssz_t m, ssz_t n, int mroll, int nroll)
void mad_imat_roll(idx_t x[], ssz_t m, ssz_t n, int mroll, int nroll)

Roll in place the values of the elements of the matrix x of sizes [m, n] by mroll and nroll.

void mad_mat_eye(num_t x[], num_t v, ssz_t m, ssz_t n, ssz_t ldr)
void mad_cmat_eye_r(cpx_t x[], num_t v_re, num_t v_im, ssz_t m, ssz_t n, ssz_t ldr)

36. MATRIX 246

void mad_imat_eye(idx_t x[], idx_t v, ssz_t m, ssz_t n, ssz_t ldr)
Fill in place the matrix x of sizes [m, n] with zeros and v on the diagonal.

void mad_mat_copy(const num_t x[], num_t r[], ssz_t m, ssz_t n, ssz_t ldx, ssz_t ldr)
void mad_mat_copym(const num_t x[], cpx_t r[], ssz_t m, ssz_t n, ssz_t ldx, ssz_t ldr)
void mad_cmat_copy(const cpx_t x[], cpx_t r[], ssz_t m, ssz_t n, ssz_t ldx, ssz_t ldr)
void mad_imat_copy(const idx_t x[], idx_t r[], ssz_t m, ssz_t n, ssz_t ldx, ssz_t ldr)
void mad_imat_copym(const idx_t x[], num_t r[], ssz_t m, ssz_t n, ssz_t ldx, ssz_t ldr)

Fill the matrix r of sizes [m, n] and leading dimension ldr with the content of the matrix x of sizes
[m, n] and leading dimension ldx.

void mad_mat_trans(const num_t x[], num_t r[], ssz_t m, ssz_t n)
void mad_cmat_trans(const cpx_t x[], cpx_t r[], ssz_t m, ssz_t n)
void mad_cmat_ctrans(const cpx_t x[], cpx_t r[], ssz_t m, ssz_t n)
void mad_imat_trans(const idx_t x[], idx_t r[], ssz_t m, ssz_t n)

Fill the matrix r of sizes [n, m] with the (conjugate) transpose of the matrix x of sizes [m, n].

void mad_mat_mul(const num_t x[], const num_t y[], num_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_mat_mulm(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_mul(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_mulm(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)

Fill the matrix r of sizes [m, n] with the product of the matrix x of sizes [m, p] by the matrix y of
sizes [p, n].

void mad_mat_tmul(const num_t x[], const num_t y[], num_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_mat_tmulm(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_tmul(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_tmulm(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)

Fill the matrix r of sizes [m, n] with the product of the transposed matrix x of sizes [p, m] by the
matrix y of sizes [p, n].

void mad_mat_mult(const num_t x[], const num_t y[], num_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_mat_multm(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_mult(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_multm(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)

Fill the matrix r of sizes [m, n] with the product of the matrix x of sizes [m, p] and the transposed
matrix y of sizes [n, p].

void mad_mat_dmul(const num_t x[], const num_t y[], num_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_mat_dmulm(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_dmul(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_dmulm(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)

Fill the matrix r of size [m, n] with the product of the diagonal of the matrix x of sizes [m, p] by
the matrix y of sizes [p, n]. If p = 1 then x will be interpreted as the diagonal of a square matrix.

void mad_mat_muld(const num_t x[], const num_t y[], num_t r[], ssz_t m, ssz_t n, ssz_t p)

36. MATRIX 247

void mad_mat_muldm(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_muld(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)
void mad_cmat_muldm(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p)

Fill the matrix r of sizes [m, n] with the product of the matrix x of sizes [m, p] by the diagonal of
the matrix y of sizes [p, n]. If p = 1 then y will be interpreted as the diagonal of a square matrix.

int mad_mat_div(const num_t x[], const num_t y[], num_t r[], ssz_t m, ssz_t n, ssz_t p, num_t rcond)
int mad_mat_divm(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p, num_t rcond)
int mad_cmat_div(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p, num_t rcond)
int mad_cmat_divm(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t m, ssz_t n, ssz_t p, num_t rcond)

Fill the matrix r of sizes [m, n] with the division of the matrx x of sizes [m, p] by the matrix y of
sizes [n, p]. The conditional number rcond is used by the solver to determine the effective rank of
non-square systems. It returns the rank of the system.

int mad_mat_invn(const num_t y[], num_t x, num_t r[], ssz_t m, ssz_t n, num_t rcond)
int mad_mat_invc_r(const num_t y[], num_t x_re, num_t x_im, cpx_t r[], ssz_t m, ssz_t n, num_t rcond)
int mad_cmat_invn(const cpx_t y[], num_t x, cpx_t r[], ssz_t m, ssz_t n, num_t rcond)
int mad_cmat_invc_r(const cpx_t y[], num_t x_re, num_t x_im, cpx_t r[], ssz_t m, ssz_t n, num_t rcond)

Fill the matrix r of sizes [n, m] with the inverse of the matrix y of sizes [m, n] scaled by the scalar
x. The conditional number rcond is used by the solver to determine the effective rank of non-square
systems. It returns the rank of the system.

int mad_mat_solve(const num_t a[], const num_t b[], num_t x[], ssz_t m, ssz_t n, ssz_t p, num_t rcond)
int mad_cmat_solve(const cpx_t a[], const cpx_t b[], cpx_t x[], ssz_t m, ssz_t n, ssz_t p, num_t rcond)

Fill the matrix x of sizes [n, p] with the minimum-norm solution of the linear least square problem
min ‖𝐴𝑥−𝐵‖ where 𝐴 is the matrix a of sizes [m, n] and 𝐵 is the matrix b of sizes [m, p], using
LU, QR or LQ factorisation depending on the shape of the system. The conditional number rcond
is used by the solver to determine the effective rank of non-square system. It returns the rank of the
system.

int mad_mat_ssolve(const num_t a[], const num_t b[], num_t x[], ssz_t m, ssz_t n, ssz_t p, num_t rcond,
num_t s_[])

int mad_cmat_ssolve(const cpx_t a[], const cpx_t b[], cpx_t x[], ssz_t m, ssz_t n, ssz_t p, num_t rcond,
num_t s_[])

Fill in the matrix x of sizes [n, p]with the minimum-norm solution of the linear least square problem
min ‖𝐴𝑥−𝐵‖ where 𝐴 is the matrix a of sizes [m, n] and 𝐵 is the matrix b of sizes [m, p], using
SVD factorisation. The conditional number rcond is used by the solver to determine the effective rank
of non-square system. It returns the rank of the system and fill the optional column vector s of size
min(m,n) with the singular values.

int mad_mat_gsolve(const num_t a[], const num_t b[], const num_t c[], const num_t d[], num_t x[], ssz_t
m, ssz_t n, ssz_t p, num_t *nrm_)

int mad_cmat_gsolve(const cpx_t a[], const cpx_t b[], const cpx_t c[], const cpx_t d[], cpx_t x[], ssz_t m,
ssz_t n, ssz_t p, num_t *nrm_)

Fill the column vector x of size n with the minimum-norm solution of the linear least square problem
min ‖𝐴𝑥 − 𝐶‖ under the constraint 𝐵𝑥 = 𝐷 where 𝐴 is a matrix a of sizes [m, n], 𝐵 is a matrix

36. MATRIX 248

b of sizes [p, n], 𝐶 is a column vector of size m and 𝐷 is a column vector of size p, using QR or
LQ factorisation depending on the shape of the system. This function also returns the status info and
optionally the norm of the residues in the nrm.

int mad_mat_gmsolve(const num_t a[], const num_t b[], const num_t d[], num_t x[], num_t y[], ssz_t m,
ssz_t n, ssz_t p)

int mad_cmat_gmsolve(const cpx_t a[], const cpx_t b[], const cpx_t d[], cpx_t x[], cpx_t y[], ssz_t m,
ssz_t n, ssz_t p)

Fill the column vector x of size n and column vector y of size p with the minimum-norm solution of
the linear Gauss-Markov problem min𝑥 ‖𝑦‖ under the constraint 𝐴𝑥+ 𝐵𝑦 = 𝐷 where 𝐴 is a matrix
a of sizes [m, n], 𝐵 is a matrix b of sizes [m, p], and 𝐷 is a column vector of size m, using QR or
LQ factorisation depending on the shape of the system. This function also returns the status info.

int mad_mat_nsolve(const num_t a[], const num_t b[], num_t x[], ssz_t m, ssz_t n, ssz_t nc, num_t rcond,
num_t r_[])

Fill the column vector x (of correctors kicks) of size n with the minimum-norm solution of the linear
(best-kick) least square problem min ‖𝐴𝑥 − 𝐵‖ where 𝐴 is the (response) matrix a of sizes [m, n]
and 𝐵 is a column vector (of monitors readings) of size m, using the MICADOPage 232, 3 algorithm
based on the Householder-Golub method [MICADO]. The argument nc is the maximum number of
correctors to use with 0 < 𝑛𝑐 ≤ 𝑛 and the argument tol is a convergence threshold (on the residues)
to stop the (orbit) correction if ‖𝐴𝑥−𝐵‖ ≤ 𝑚× tol. This function also returns the updated number
of correctors nc effectively used during the correction and the residues in the optional column vector
r of size m.

int mad_mat_pcacnd(const num_t a[], idx_t ic[], ssz_t m, ssz_t n, ssz_t ns, num_t cut, num_t s_[])
int mad_cmat_pcacnd(const cpx_t a[], idx_t ic[], ssz_t m, ssz_t n, ssz_t ns, num_t cut, num_t s_[])

Fill the column vector ic of size n with the indexes of the columns to remove from the matrix a of
sizes [m, n] using the Principal Component Analysis. The argument ns is the maximum number of
singular values to consider and rcond is the conditioning number used to select the singular values
versus the largest one, i.e. consider the ns larger singular values 𝜎𝑖 such that 𝜎𝑖 > 𝜎max×rcond. This
function also returns the column vector of size min(m,n) filled with the singluar values. Default: ns_
= ncol, rcond_ = eps.

int mad_mat_svdcnd(const num_t a[], idx_t ic[], ssz_t m, ssz_t n, ssz_t ns, num_t cut, num_t s_[], num_t
tol)

int mad_cmat_svdcnd(const cpx_t a[], idx_t ic[], ssz_t m, ssz_t n, ssz_t ns, num_t cut, num_t s_[], num_t
tol)

Fill the column vector ic of size n with the indexes of the columns to remove from the matrix a of
sizes [m, n] based on the analysis of the right matrix 𝑉 from the SVD decomposition 𝑈𝑆𝑉 . The
argument ns is the maximum number of singular values to consider and rcond is the conditioning
number used to select the singular values versus the largest one, i.e. consider the ns larger singular
values 𝜎𝑖 such that 𝜎𝑖 > 𝜎max×rcond. The argument tol is a threshold similar to rcond used to
reject components in 𝑉 that have similar or opposite effect than components already encountered.
This function also returns the real column vector of size min(m,n) filled with the singluar values.
Default: ns_ = min(m,n), rcond_ = eps.

int mad_mat_svd(const num_t x[], num_t u[], num_t s[], num_t v[], ssz_t m, ssz_t n)

36. MATRIX 249

int mad_cmat_svd(const cpx_t x[], cpx_t u[], num_t s[], cpx_t v[], ssz_t m, ssz_t n)
Fill the column vector s of size min(m,n) with the singular values, and the two matrices u of sizes
[m, m] and v of sizes [n, n] with the SVD factorisation of the matrix x of sizes [m,n], and returns
the status info. The singular values are positive and sorted in decreasing order of values, i.e. largest
first.

int mad_mat_eigen(const num_t x[], cpx_t w[], num_t vl[], num_t vr[], ssz_t n)
int mad_cmat_eigen(const cpx_t x[], cpx_t w[], cpx_t vl[], cpx_t vr[], ssz_t n)

Fill the column vector w of size nwith the eigenvalues followed by the status info and the two optional
matrices vr and vl of sizes [n, n] containing the left and right eigenvectors resulting from the Eigen
Decomposition of the square matrix x of sizes [n, n]. The eigenvectors are normalized to have unit
Euclidean norm and their largest component real, and satisfy 𝑋𝑣𝑟 = 𝜆𝑣𝑟 and 𝑣𝑙𝑋 = 𝜆𝑣𝑙.

int mad_mat_det(const num_t x[], num_t *r, ssz_t n)
int mad_cmat_det(const cpx_t x[], cpx_t *r, ssz_t n)

Return in r, the Determinant of the square matrix mat of sizes [n, n] using LU factorisation for
better numerical stability, and return the status info.

void mad_mat_fft(const num_t x[], cpx_t r[], ssz_t m, ssz_t n)
void mad_cmat_fft(const cpx_t x[], cpx_t r[], ssz_t m, ssz_t n)
void mad_cmat_ifft(const cpx_t x[], cpx_t r[], ssz_t m, ssz_t n)

Fill the matrix r with the 2D FFT and inverse of the matrix x of sizes [m, n].

void mad_mat_rfft(const num_t x[], cpx_t r[], ssz_t m, ssz_t n)
Fill the matrix r of sizes [m, n/2+1] with the 2D real FFT of the matrix x of sizes [m, n].

void mad_cmat_irfft(const cpx_t x[], num_t r[], ssz_t m, ssz_t n)
Fill the matrix r of sizes [m, n] with the 1D real FFT inverse of the matrix x of sizes [m, n/2+1].

void mad_mat_nfft(const num_t x[], const num_t x_node[], cpx_t r[], ssz_t m, ssz_t n, ssz_t nr)
void mad_cmat_nfft(const cpx_t x[], const num_t x_node[], cpx_t r[], ssz_t m, ssz_t n, ssz_t nr)

Fill the matrix r of sizes [m, nr] with the 2D non-equispaced FFT of the matrices x and x_node of
sizes [m, n].

void mad_cmat_infft(const cpx_t x[], const num_t r_node[], cpx_t r[], ssz_t m, ssz_t n, ssz_t nx)
Fill the matrix r of sizes [m, n] with the 2D non-equispaced FFT inverse of the matrix x of sizes [m,
nx] and the matrix r_node of sizes [m, n]. Note that r_node here is the same matrix as x_node in
the 2D non-equispaced forward FFT.

void mad_mat_sympconj(const num_t x[], num_t r[], ssz_t n)
void mad_cmat_sympconj(const cpx_t x[], cpx_t r[], ssz_t n)

Return in r the symplectic ‘conjugate’ of the vector x of size n.

num_t mad_mat_symperr(const num_t x[], num_t r_[], ssz_t n, num_t *tol_)
num_t mad_cmat_symperr(const cpx_t x[], cpx_t r_[], ssz_t n, num_t *tol_)

Return the norm of the symplectic error and fill the optional matrix r with the symplectic deviation of
the matrix x. The optional argument tol is used as the tolerance to check if the matrix x is symplectic
or not, and saves the result as 0 (non-symplectic) or 1 (symplectic) within tol for output.

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Determinant

36. ROTATIONS 250

void mad_vec_dif(const num_t x[], const num_t y[], num_t r[], ssz_t n)
void mad_vec_difv(const num_t x[], const cpx_t y[], cpx_t r[], ssz_t n)
void mad_cvec_dif(const cpx_t x[], const cpx_t y[], cpx_t r[], ssz_t n)
void mad_cvec_difv(const cpx_t x[], const num_t y[], cpx_t r[], ssz_t n)

Fill the matrix r of sizes [m, n] with the absolute or relative differences between the elements of the
matrix x and y with compatible sizes. The relative difference is taken for the values with magnitude
greater than 1, otherwise it takes the absolute difference.

8.3 Rotations

void mad_mat_rot(num_t x[2 * 2], num_t a)
Fill the matrix x with a 2D rotation of angle a.

void mad_mat_rotx(num_t x[3 * 3], num_t ax)
void mad_mat_roty(num_t x[3 * 3], num_t ay)
void mad_mat_rotz(num_t x[3 * 3], num_t az)

Fill the matrix x with the 3D rotation of angle a? around the axis given by the suffix ? in {x,y,z}.

void mad_mat_rotxy(num_t x[3 * 3], num_t ax, num_t ay, log_t inv)
void mad_mat_rotxz(num_t x[3 * 3], num_t ax, num_t az, log_t inv)
void mad_mat_rotyz(num_t x[3 * 3], num_t ay, num_t az, log_t inv)

Fill the matrix x with the two successive 3D rotations of angles a? around the two axis given by the
suffixes ? in {x,y,z}. If inv = 1 returns the inverse rotations, i.e. the transpose of the matrix x.
Note that the first rotation changes the axis orientation of the second rotation.

void mad_mat_rotxyz(num_t x[3 * 3], num_t ax, num_t ay, num_t az, log_t inv)
void mad_mat_rotxzy(num_t x[3 * 3], num_t ax, num_t ay, num_t az, log_t inv)
void mad_mat_rotyxz(num_t x[3 * 3], num_t ax, num_t ay, num_t az, log_t inv)

Fill the matrix x with the three successive 3D rotations of angles a? around the three axis given by the
suffixes ? in {x,y,z}. If inv = 1 returns the inverse rotations, i.e. the transpose of the matrix x.
Note that the first rotation changes the axis orientation of the second rotation, which changes the axis
orientation of the third rotation.

void mad_mat_torotxyz(const num_t x[3 * 3], num_t r[3], log_t inv)
void mad_mat_torotxzy(const num_t x[3 * 3], num_t r[3], log_t inv)
void mad_mat_torotyxz(const num_t x[3 * 3], num_t r[3], log_t inv)

Fill the vector of the three angles r around the axis {x,y,z}, {x,z,y} and {y,x,z} from the matrix
x. If inv = 1, it takes the inverse rotations, i.e. the transpose of the matrix x.

void mad_mat_rotv(num_t x[3 * 3], const num_t v[3], num_t a, log_t inv)
Fill the matrix x with the 3D rotation of angle a around the vector v. If inv = 1 returns the inverse
rotations, i.e. the transpose of the matrix.

num_t mad_mat_torotv(const num_t x[3 * 3], num_t v_[3], log_t inv)
Return the angle and fill the optional vector v with the 3D rotations in x. If inv = 1, it takes the
inverse rotations, i.e. the transpose of the matrix x.

36. REFERENCES 251

void mad_mat_rotq(num_t x[3 * 3], const num_t q[4], log_t inv)
Fill the matrix x with the 3D rotation given by the quaternion q. If inv = 1 returns the inverse
rotations, i.e. the transpose of the matrix.

void mad_mat_torotq(const num_t x[3 * 3], num_t q[4], log_t inv)
Fill the quaternion q with the 3D rotations in x. If inv = 1, it takes the inverse rotations, i.e. the
transpose of the matrix x.

8.4 Misalignments

void mad_mat_rtbar(num_t Rb[3 * 3], num_t Tb[3], num_t el, num_t ang, num_t tlt, const num_t R_[3 *
3], const num_t T[3])

Compute as output the rotation matrix Rb, i.e. 𝑅̄, and the translation vector Tb, i.e. 𝑇 , used to restore
the global frame at exit of a misaligned element in survey, given as input the element length el, angle
ang, tilt tlt, and the rotation matrix R and the translation vector T at entry.

8.5 Miscellaneous

void mad_fft_cleanup(void)
Cleanup data allocated by the FFTW library.

9 References

252

Chapter 37. Differential Algebra

This chapter describes real tpsa and complex ctpsa objects as supported by MAD-NG. The module for the
Generalized Truncated Power Series Algebra (GTPSA) that represents parametric multivariate truncated
Taylor series is not exposed, only the contructors are visible from the MAD environment and thus, TPSAs are
handled directly by their methods or by the generic functions of the same name from the module MAD.gmath.
Note that both tpsa and ctpsa are defined as C structure for direct compliance with the C API.

1 Introduction

TPSAs are numerical objects representing 𝑛-th degrees Taylor polynomial approximation of some functions
𝑓(𝑥) about 𝑥 = 𝑎. They are a powerful differential algebra tool for solving physics problems described by
differential equations and for perturbation theory, e.g. for solving motion equations, but also for estimating
uncertainties, modelling multidimensional distributions or calculating multivariate derivatives for optimiz-
ation. There are often misunderstandings about their accuracy and limitations, so it is useful to clarify here
some of these aspects here.

To begin with, GTPSAs represent multivariate Taylor series truncated at order 𝑛, and thus behave like 𝑛-th
degrees multivariate polynomials with coefficients in R or C. MAD-NG supports GTPSAs with thousands
of variables and/or parameters of arbitrary order each, up to a maximum total order of 63, but Taylor series
with alternating signs in their coefficients can quickly be subject to numerical instabilities and catastrophic
cancellation as orders increase.

Other methods are not better and suffer from the same problem and more, such as symbolic differentiation,
which can lead to inefficient code due to the size of the analytical expressions, or numerical differentiation,
which can introduce round-off errors in the discretisation process and cancellation. Both classical methods
are more problematic when computing high order derivatives, where complexity and errors increase.

1.1 Representation

A TPSA in the variable 𝑥 at order 𝑛 in the neighbourhood of the point 𝑎 in the domain of the function 𝑓 ,
noted 𝑇𝑛

𝑓 (𝑥; 𝑎), has the following representation:

𝑇𝑛
𝑓 (𝑥; 𝑎) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥− 𝑎) +

𝑓 ′′(𝑎)

2!
(𝑥− 𝑎)2 + · · ·+ 𝑓 (𝑛)(𝑎)

𝑛!
(𝑥− 𝑎)𝑛

=

𝑛∑︁
𝑘=0

𝑓
(𝑘)
𝑎

𝑘!
(𝑥− 𝑎)𝑘

where the terms 𝑓
(𝑘)
𝑎
𝑘! are the coefficients stored in the tpsa and ctpsa objects.

The calculation of these coefficients uses a technique known as automatic differentiation (AD) which operates
as polynomials over the augmented (differential) algebra of dual number, without any approximation, being
exact to numerical precision.

https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Perturbation_theory
https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Dual_number

37. REPRESENTATION 253

The validity of the polynomial representation 𝑇𝑛
𝑓 (𝑥; 𝑎) for the real or complex analytic function 𝑓 is charac-

terized by the convergence of the remainder when the order 𝑛 goes to infinity:

lim
𝑛→∞

𝑅𝑛
𝑓 (𝑥; 𝑎) = lim

𝑛→∞
𝑓𝑎(𝑥)− 𝑇𝑛

𝑓 (𝑥; 𝑎) = 0

and the radius of convergence ℎ of 𝑇𝑛
𝑓 (𝑥; 𝑎) nearby the point 𝑎 is given by:

min
ℎ>0

lim
𝑛→∞

𝑅𝑛
𝑓 (𝑥± ℎ; 𝑎) ̸= 0.

By using the mean value theorem recursively we can derive the explicit mean-value form of the remainder:

𝑅𝑛
𝑓 (𝑥; 𝑎) =

𝑓
(𝑛+1)
𝑎 (𝜉)

(𝑛+ 1)!
(𝑥− 𝑎)𝑛+1

for some 𝜉 strictly between 𝑥 and 𝑎, leading to the mean-value form of the Taylor’s theorem:

𝑓𝑎(𝑥) = 𝑇𝑛
𝑓 (𝑥; 𝑎) +𝑅𝑛

𝑓 (𝑥; 𝑎) =

𝑛∑︁
𝑘=0

𝑓
(𝑘)
𝑎

𝑘!
(𝑥− 𝑎)𝑘 +

𝑓
(𝑛+1)
𝑎 (𝜉)

(𝑛+ 1)!
(𝑥− 𝑎)𝑛+1

Note that a large radius of convergence does not necessarily mean rapid convergence of the Taylor series to
the function, although there is a relationship between the rate of convergence, the function 𝑓 , the point 𝑎
and the length ℎ. Nevertheless, Taylor series are known to be slow to converge in most cases for numerical
applications, except in some cases where appropriate range reduction or convergence acceleration methods
give good results. Thus, Taylor series should not be used as interpolation functions when better formulas
exist for this purpose, see for example fixed-point or minmax algorithms.

In our practice, a truncation error is always present due to the truncated nature of the TPSA at order 𝑛, but it
is rarely calculated analytically for complex systems as it can be estimated by comparing the calculations at
high and low orders, and determining the lowest order for which the result is sufficiently stable.

By extension, a TPSA in the two variables 𝑥 and 𝑦 at order 2 in the neighbourhood of the point (𝑎, 𝑏) in the
domain of the function 𝑓 , noted 𝑇 2

𝑓 (𝑥, 𝑦; 𝑎, 𝑏), has the following representation:

𝑇 2
𝑓 (𝑥, 𝑦; 𝑎, 𝑏) = 𝑓(𝑎, 𝑏)+

(︃
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
(𝑎,𝑏)

(𝑥− 𝑎) +
𝜕𝑓

𝜕𝑦

⃒⃒⃒⃒
(𝑎,𝑏)

(𝑦 − 𝑏)

)︃

+
1

2!

(︃
𝜕2𝑓

𝜕𝑥2

⃒⃒⃒⃒
(𝑎,𝑏)

(𝑥− 𝑎)2 + 2
𝜕2𝑓

𝜕𝑥𝜕𝑦

⃒⃒⃒⃒
(𝑎,𝑏)

(𝑥− 𝑎)(𝑦 − 𝑏) +
𝜕2𝑓

𝜕𝑦2

⃒⃒⃒⃒
(𝑎,𝑏)

(𝑦 − 𝑏)2

)︃
where the large brackets are grouping the terms in homogeneous polynomials, as stored in the tpsa and ctpsa
objects. The central term of the second order 2 𝜕2𝑓

𝜕𝑥𝜕𝑦 emphasises the reason why the function 𝑓 must be
analytic and independent of the integration path as it implies 𝜕2𝑓

𝜕𝑥𝜕𝑦 = 𝜕2𝑓
𝜕𝑦𝜕𝑥 and stores the value (scaled by 1

2)
as the coefficient of the monomial 𝑥1𝑦1. This is an important consideration to keep in mind regarding TPSA,
but it is not a pactical limitation due to the conservative nature of our applications described by Hamiltonian
vector fields.

The generalization to a TPSA of 𝜈 variables 𝑋 at order 𝑛 nearby the point 𝐴 in the 𝜈-dimensional domain
of the function 𝑓 , noted 𝑇𝑛

𝑓 (𝑋;𝐴), has the following representation:

𝑇𝑛
𝑓 (𝑋;𝐴) =

𝑛∑︁
𝑘=0

𝑓
(𝑘)
𝐴

𝑘!
(𝑋;𝐴)𝑘 =

𝑛∑︁
𝑘=0

1

𝑘!

∑︁
|𝑚⃗|=𝑘

(︂
𝑘
𝑚⃗

)︂
𝜕𝑘𝑓

𝜕𝑋𝑚⃗

⃒⃒⃒⃒
𝐴

(𝑋;𝐴)𝑚⃗

https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Radius_of_convergence
https://en.wikipedia.org/wiki/Mean_value_theorem
https://en.wikipedia.org/wiki/Taylor%27s_theorem
https://en.wikipedia.org/wiki/Series_acceleration
https://en.wikipedia.org/wiki/Minimax_approximation_algorithm
https://en.wikipedia.org/wiki/Homogeneous_polynomial
https://en.wikipedia.org/wiki/Conservative_vector_field
https://en.wikipedia.org/wiki/Hamiltonian_vector_field
https://en.wikipedia.org/wiki/Hamiltonian_vector_field

37. APPLICATION 254

where the term
(︂
𝑘
𝑚⃗

)︂
= 𝑘!

𝑐1! 𝑐2!..𝑐𝜈 !
is the multinomial coefficient with 𝑚⃗ the vector of 𝜈 variables orders

𝑐𝑖, 𝑖 = 1..𝜈 in the monomial and |𝑚⃗| =
∑︀

𝑖 𝑐𝑖 its total order. Again, we may mention that each term
1
𝑘!

(︂
𝑘
𝑚⃗

)︂
𝜕𝑘𝑓
𝜕𝑋𝑚⃗

⃒⃒⃒⃒
𝐴

corresponds strictly to a coefficient stored in the tpsa and ctpsa objects.

An important point to mention is related to the multinomial coefficient and its relevance when computing
physical quantities such as high order anharmonicities, e.g. chromaticities. When the physical quantity
corresponds to the derivative of the function 𝑓 (𝑘)𝐴 , the coefficient must be multiplied by 𝑐1! 𝑐2! ..𝑐𝜈 ! in order
to obtain the correct value.

1.2 Approximation

As already said, TPSAs do not perform approximations for orders 0 ..𝑛 and the Taylor’s theorem gives an
explicit form of the remainder for the truncation error of higher orders, while all derivatives are computed
using AD. AD relies on the fact that any computer program can execute a sequence of elementary arithmetic
operations and functions, and apply the chain rule to them repeatedly to automatically compute the derivatives
to machine precision.

So when TPSAs introduce appromixation errors? When they are used as interpolation functions to approx-
imate by substitution or perturbation, values at positions 𝑎+ ℎ away from their initial point 𝑎:

𝑇𝑛
𝑓 (𝑥+ ℎ; 𝑎) =

𝑛∑︁
𝑘=0

𝑓
(𝑘)
𝑎

𝑘!
(𝑥− 𝑎+ ℎ)𝑘 ̸=

𝑛∑︁
𝑘=0

𝑓
(𝑘)
𝑎+ℎ

𝑘!
(𝑥− 𝑎− ℎ)𝑘 = 𝑇𝑛

𝑓 (𝑥; 𝑎+ ℎ)

where the approximation error at order 𝑘 is given by:

⃒⃒⃒
𝑓
(𝑘)
𝑎+ℎ − 𝑓 (𝑘)𝑎

⃒⃒⃒
≈ 1

|2ℎ|

⃒⃒⃒⃒
⃒d

𝑘𝑇𝑛
𝑓 (𝑥; 𝑎+ ℎ)

d𝑥𝑘
−

d𝑘𝑇𝑛
𝑓 (𝑥+ ℎ; 𝑎)

d𝑥𝑘

⃒⃒⃒⃒
⃒+𝒪(𝑘 + 1)

In summary, operations and functions on TPSAs are exact while TPSAs used as functions lead to approxim-
ations even within the radius of convergence, unlike infinite Taylor series. MAD-NG never uses TPSAs as
interpolation functions, but of course the module does provide users with methods for interpolating functions.

1.3 Application

MAD-NG is a tracking code that never composes elements maps during tracking, but performs a functional
application of elements physics to user-defined input differential maps modelled as sets of TPSAs (one per
variable). Tracking particles orbits is a specific case where the “differential” maps are of order 0, i.e. they
contain only the scalar part of the maps and no derivatives. Therefore, TPSAs must also behave as scalars
in polymorphic codes like MAD-NG, so that the same equations of motion can be applied by the same
functions to particle orbits and differential maps. Thus, the track command, and by extension the cofind
(closed orbit search) and twiss commands, never use TPSAs as interpolation functions and the results are
as accurate as for tracking particles orbits. In particular, it preserves the symplectic structure of the phase
space if the applied elements maps are themselves symplectic maps.

Users may be tempted to compute or compose elements maps to model whole elements or even large lattice
sections before applying them to some input differential maps in order to speed up tracking or parallelise

https://en.wikipedia.org/wiki/Multinomial_theorem
https://en.wikipedia.org/wiki/Symplectomorphism

37. C API 255

computations. But this approach leads to the two types of approximations that we have just explained: the
resulting map is not only truncated, thus loosing local feed-down effects implied by e.g. a translation from
orbit 𝑥 to 𝑥+ ℎ(𝑠) along the path 𝑠 or equivalently by the misalignment of the elements, but the derivatives
are also approximated for each particle orbit by the global composition calculated on a nearby orbit, typically
the zero orbit. So as the addition of floating point numbers is not associative, the composition of truncated
maps is not associative too.

The following equations show the successive refinement of the type of calculations performed by the tracking
codes, starting from the worst but common approximations at the top-left to the more general and accurate
functional application without approximation at the bottom-right, as computed by MAD-NG:

(ℳ𝑛 ∘ · · · ∘ℳ2 ∘ℳ1)(𝑋0) ̸= ℳ𝑛(· · · (ℳ2(ℳ1(𝑋0))) · · ·)

̸= ̃︁ℳ𝑛(· · · (̃︁ℳ2(̃︁ℳ1(𝑋0))) · · ·)
̸= ℱ𝑛(· · · (ℱ2(ℱ1(𝑋0))) · · ·)

where ℳ𝑖 is the 𝑖-th map computed at some a priori orbit (zero orbit), ̃︁ℳ𝑖 is the 𝑖-th map computed at
the input orbit 𝑋𝑖−1 which still implies some expansion, and finally ℱ𝑖 is the functional application of the
full-fledged physics of the 𝑖-th map without any intermediate expansion, i.e. without calculating a differential
map, and with all the required knownledge including the input orbit 𝑋𝑖−1 to perform the exact calculation.

However, although MAD-NG only performs functional map applications (last right equation above) and never
compute element maps or uses TPSAs as interpolation functions, it could be prone to small truncation errors
during the computation of the non-linear normal forms which involves the composition of many orbitless
maps, potentially breaking symplecticity of the resulting transformation for last order.

The modelling of multidimensional beam distributions is also possible with TPSAs, as when a linear phase
space description is provided as initial conditions to the twiss command through, e.g. a beta0 block.
Extending the description of the initial phase space with high-order maps allows complex non-linear phase
spaces to be modelled and their transformations along the lattice to be captured and analysed.

1.4 Performance

In principle, TPSAs should have equivalent performance to matrix/tensors for low orders and small num-
ber of variables, perhaps slightly slower at order 1 or 2 as the management of these data structures involves
complex code and additional memory allocations. But from order 3 and higher, TPSA-based codes outper-
form matrix/tensor codes because the number of coefficients remains much smaller as shown in Fig. 37.1
and Fig. 37.2, and the complexity of the elementary operations (resp. multiplication) depends linearly (resp.
quadratically) on the size of these data structures.

37. C API 256

Figure37.1: Number of coefficients in TPSAs for 𝜈 variables at order 𝑛 is
(︃
𝑛+ 𝜈
𝜈

)︃
= (𝑛+𝜈)!

𝑛!𝜈! .

Figure37.2: Number of coefficients in tensors for 𝜈 variables at order 𝑛 is
∑︀𝑛

𝑘=0 𝜈
𝑘+1 = 𝜈(𝜈𝑛+1−1)

𝜈−1 .

2 Constructors

3 Functions

4 Methods

5 Operators

6 Iterators

7 C API

257

Chapter 38. Differential Maps

This chapter describes real damap and complex cdamap objects as supported by MAD-NG. They are useful
abstractions to represent non-linear parametric multivariate differential maps, i.e. Diffeomorphisms, Vector
Fields, Exponential Maps and Lie Derivative. The module for the differential maps is not exposed, only the
contructors are visible from the MAD environment and thus, differential maps are handled directly by their
methods or by the generic functions of the same name from the module MAD.gmath. Note that damap and
cdamap are defined as C structure for direct compliance with the C API.

1 Introduction

2 Constructors

3 Functions

4 Methods

5 Operators

6 Iterators

7 C API

https://en.wikipedia.org/wiki/Diffeomorphism
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Exponential_map_(Lie_theory)
https://en.wikipedia.org/wiki/Lie_algebra

258

Chapter 39. Miscellaneous Functions

This chapter lists some useful functions from the module MAD.utility that are complementary to the stand-
ard library for manipulating files, strings, tables, and more.

1 Files Functions

openfile(filename_, mode_, extension_)

filexists(filename)

fileisnewer(filename1, filename2, timeattr_)

filesplitname(filename)

mockfile

2 Formating Functions

printf(str, ...)

fprintf(file, str, ...)

assertf(str, ...)

errorf(str, ...)

3 Strings Functions

strinter(str, var, policy_)

strtrim(str, ini_)

strnum(str, ini_)

strident(str, ini_)

strquote(str, ini_)

strbracket(str, ini_)

strsplit(str, seps, ini_)

strqsplit(str, seps, ini_)

strqsplitall(str, seps, ini_, r_)

is_identifier(str)

39. CONVERSION FUNCTIONS 259

4 Tables Functions

kpairs(tbl, n_)

tblrep(val, n_, tbldst_)

tblicpy(tblsrc, mtflag_, tbldst_)

tblcpy(tblsrc, mtflag_, tbldst_)

tbldeepcpy(tblsrc, mtflag_, xrefs_, tbldst_)

tblcat(tblsrc1, tblsrc2, mtflag_, tbldst_)

tblorder(tbl, key, n_)

5 Iterable Functions

rep(x, n_)

clearidxs(a, i_, j_)

setidxs(a, k_, i_, j_)

bsearch(tbl, val, [cmp_,] low_, high_)

lsearch(tbl, val, [cmp_,] low_, high_)

monotonic(tbl, [strict_,] [cmp_,] low_, high_)

6 Mappable Functions

clearkeys(a, pred_)

setkeys(a, k_, i_, j_)

countkeys(a)

keyscount(a, c_)

val2keys(a)

39. SPECIAL FUNCTIONS 260

7 Conversion Functions

log2num(log)

num2log(num)

num2str(num)

int2str(int)

str2str(str)

str2cmp(str)

tbl2str(tbl, sep_)

str2tbl(str, match_, ini_)

lst2tbl(lst, tbl_)

tbl2lst(tbl, lst_)

8 Generic Functions

same(a, ...)

copy(a, ...)

tostring(a, ...)

totable(a, ...)

toboolean(a)

9 Special Functions

pause(msg_, val_)

atexit(fun, uniq_)

runonce(fun, ...)

collectlocal(fun_, env_)

261

Chapter 40. Generic Physics

Just a link (never written)

262

Chapter 41. External modules

263

Part V

PROGRAMMING

264

Chapter 42. MAD environment

265

Chapter 43. Tests

1 Adding Tests

266

Chapter 44. Elements

1 Adding Elements

267

Chapter 45. Commands

1 Adding Commands

268

Chapter 46. Modules

1 Adding Modules

2 Embedding Modules

269

Chapter 47. Using C FFI

270

Part VI

Indices and tables

47. INDICES AND TABLES 271

– genindex
– modindex
– search

47. INDICES AND TABLES 272

Bibliography

[ISOC99] ISO/IEC 9899:1999 Programming Languages - C. https://www.iso.org/standard/29237.html.
[XORSHFT03] G. Marsaglia, “Xorshift RNGs”, Journal of Statistical Software, 8 (14), July 2003.

doi:10.18637/jss.v008.i14.
[TAUSWTH96] P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathem-

atics of Computation, 65 (213), 1996, p203–213.
[MERTWIS98] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistrib-

uted uniform pseudorandom number generator”. ACM Trans. on Modeling and Comp.
Simulation, 8 (1), Jan. 1998, p3–30.

[CPXDIV] R. L. Smith, “Algorithm 116: Complex division”, Commun. ACM, 5(8):435, 1962.
[CPXDIV2] M. Baudin and R. L. Smith, “A robust complex division in Scilab”, October 2012. http:

//arxiv.org/abs/1210.4539.
[FADDEEVA] A. Oeftiger, R. De Maria, L. Deniau et al, “Review of CPU and GPU Faddeeva Imple-

mentations”, IPAC2016. https://cds.cern.ch/record/2207430/files/wepoy044.pdf.
[ISOC99CPX] ISO/IEC 9899:1999 Programming Languages - C. https://www.iso.org/standard/29237.

html.
[MICADO] B. Autin, and Y. Marti, “Closed Orbit Correction of Alternating Gradient Machines using

a Small Number of Magnets”, CERN ISR-MA/73-17, Mar. 1973.
[MATFUN] N.J. Higham, and X. Liu, “A Multiprecision Derivative-Free Schur–Parlett Algorithm for

Computing Matrix Functions”, SIAM J. Matrix Anal. Appl., Vol. 42, No. 3, pp. 1401-1422,
2021.

https://www.iso.org/standard/29237.html
http://arxiv.org/abs/1210.4539
http://arxiv.org/abs/1210.4539
https://cds.cern.ch/record/2207430/files/wepoy044.pdf
https://www.iso.org/standard/29237.html
https://www.iso.org/standard/29237.html

273

Index
A
achain() (built-in function), 190
assertf() (built-in function), 258
atexit() (built-in function), 260

B
bind1st() (built-in function), 190
bind2nd() (built-in function), 190
bind2st() (built-in function), 190
bind3rd() (built-in function), 190
bind3st() (built-in function), 190
bottom() (built-in function), 191
bsearch() (built-in function), 259

C
chain() (built-in function), 190
clearidxs() (built-in function), 259
clearkeys() (built-in function), 259
cmatrix() (built-in function), 214
CODATA, 179
collectlocal() (built-in function), 260
Complex numbers, 204
complex() (built-in function), 205
compose() (built-in function), 190
Constants, 177
copy() (built-in function), 260
countkeys() (built-in function), 259
cpx_t (C type), 177
cvector() (built-in function), 214

D
deferred() (built-in function), 176
Differential algebra, 251
Differential maps, 256

E
errorf() (built-in function), 258

F
fileisnewer() (built-in function), 258
filesplitname() (built-in function), 258
filexists() (built-in function), 258
fprintf() (built-in function), 258
Functions, 180
functor() (built-in function), 190
Functors, 189

G
Generalized Truncated Power Series

Algebra, 251
get_metamethod() (built-in function), 174
get_metatable() (built-in function), 174
GTPSA, 251

I
idx_t (C type), 176
imatrix() (built-in function), 214
int2str() (built-in function), 260
is_cmatrix() (built-in function), 215
is_complex() (built-in function), 206
is_cvector() (built-in function), 214
is_functor() (built-in function), 191
is_identifier() (built-in function), 258
is_imatrix() (built-in function), 215
is_ivector() (built-in function), 214
is_logrange() (built-in function), 198
is_matrix() (built-in function), 215
is_metaname() (built-in function), 174
is_monomial() (built-in function), 192
is_randgen() (built-in function), 202
is_range() (built-in function), 198
is_scalar() (built-in function), 206
is_vector() (built-in function), 214
is_xrandgen() (built-in function), 202
isa_matrix() (built-in function), 215
isa_range() (built-in function), 198
isa_vector() (built-in function), 214
isy_matrix() (built-in function), 215
isy_vector() (built-in function), 215
ivector() (built-in function), 214

K
keyscount() (built-in function), 259
kpairs() (built-in function), 259

L
Linear algebra, 212
linspace() (built-in function), 214
log2num() (built-in function), 260
log_t (C type), 176
logrange() (built-in function), 197
logspace() (built-in function), 214
lsearch() (built-in function), 259
lst2tbl() (built-in function), 260

47. INDICES AND TABLES 274

M
mad_cmat_center (C function), 245
mad_cmat_copy (C function), 246
mad_cmat_ctrans (C function), 246
mad_cmat_det (C function), 249
mad_cmat_div (C function), 247
mad_cmat_divm (C function), 247
mad_cmat_dmul (C function), 246
mad_cmat_dmulm (C function), 246
mad_cmat_eigen (C function), 249
mad_cmat_eye_r (C function), 245
mad_cmat_fft (C function), 249
mad_cmat_gmsolve (C function), 248
mad_cmat_gsolve (C function), 247
mad_cmat_ifft (C function), 249
mad_cmat_infft (C function), 249
mad_cmat_invc_r (C function), 247
mad_cmat_invn (C function), 247
mad_cmat_irfft (C function), 249
mad_cmat_mul (C function), 246
mad_cmat_muld (C function), 246
mad_cmat_muldm (C function), 246
mad_cmat_mulm (C function), 246
mad_cmat_mult (C function), 246
mad_cmat_multm (C function), 246
mad_cmat_nfft (C function), 249
mad_cmat_pcacnd (C function), 248
mad_cmat_rev (C function), 245
mad_cmat_roll (C function), 245
mad_cmat_solve (C function), 247
mad_cmat_ssolve (C function), 247
mad_cmat_svd (C function), 248
mad_cmat_svdcnd (C function), 248
mad_cmat_sympconj (C function), 249
mad_cmat_symperr (C function), 249
mad_cmat_tmul (C function), 246
mad_cmat_tmulm (C function), 246
mad_cmat_trans (C function), 246
mad_cpx_abs_r (C function), 209
mad_cpx_acos_r (C function), 211
mad_cpx_acosh_r (C function), 211
mad_cpx_arg_r (C function), 209
mad_cpx_asin_r (C function), 211
mad_cpx_asinc (C function), 211
mad_cpx_asinc_r (C function), 211
mad_cpx_asinh_r (C function), 211
mad_cpx_asinhc (C function), 211

mad_cpx_asinhc_r (C function), 211
mad_cpx_atan_r (C function), 211
mad_cpx_atanh_r (C function), 211
mad_cpx_cos_r (C function), 210
mad_cpx_cosh_r (C function), 211
mad_cpx_dawson (C function), 212
mad_cpx_dawson_r (C function), 212
mad_cpx_div (C function), 210
mad_cpx_div_r (C function), 210
mad_cpx_erf (C function), 211
mad_cpx_erf_r (C function), 211
mad_cpx_erfc (C function), 212
mad_cpx_erfc_r (C function), 212
mad_cpx_erfcx (C function), 212
mad_cpx_erfcx_r (C function), 212
mad_cpx_erfi (C function), 212
mad_cpx_erfi_r (C function), 212
mad_cpx_exp_r (C function), 210
mad_cpx_inv (C function), 210
mad_cpx_inv_r (C function), 210
mad_cpx_invsqrt_r (C function), 210
mad_cpx_log10_r (C function), 210
mad_cpx_log_r (C function), 210
mad_cpx_mod_r (C function), 210
mad_cpx_polar_r (C function), 210
mad_cpx_pow_r (C function), 210
mad_cpx_powi (C function), 210
mad_cpx_powi_r (C function), 210
mad_cpx_proj_r (C function), 210
mad_cpx_rect_r (C function), 210
mad_cpx_sin_r (C function), 210
mad_cpx_sinc (C function), 211
mad_cpx_sinc_r (C function), 211
mad_cpx_sinh_r (C function), 211
mad_cpx_sinhc (C function), 211
mad_cpx_sinhc_r (C function), 211
mad_cpx_sqrt_r (C function), 210
mad_cpx_tan_r (C function), 210
mad_cpx_tanh_r (C function), 211
mad_cpx_unit_r (C function), 209
mad_cpx_wf (C function), 211
mad_cpx_wf_r (C function), 211
mad_cvec_abs (C function), 243
mad_cvec_add (C function), 243
mad_cvec_addc_r (C function), 243
mad_cvec_addn (C function), 243
mad_cvec_addv (C function), 243
mad_cvec_center (C function), 243

47. INDICES AND TABLES 275

mad_cvec_conj (C function), 243
mad_cvec_copy (C function), 242
mad_cvec_dif (C function), 249
mad_cvec_difv (C function), 249
mad_cvec_dist (C function), 243
mad_cvec_distv (C function), 243
mad_cvec_div (C function), 244
mad_cvec_divc_r (C function), 244
mad_cvec_divn (C function), 244
mad_cvec_divv (C function), 244
mad_cvec_dot_r (C function), 243
mad_cvec_dotv_r (C function), 243
mad_cvec_eval_r (C function), 242
mad_cvec_fft (C function), 245
mad_cvec_fill (C function), 242
mad_cvec_ifft (C function), 245
mad_cvec_infft (C function), 245
mad_cvec_irfft (C function), 245
mad_cvec_kadd (C function), 245
mad_cvec_kdot_r (C function), 243
mad_cvec_kdotv_r (C function), 243
mad_cvec_ksum_r (C function), 242
mad_cvec_mean_r (C function), 242
mad_cvec_minmax (C function), 242
mad_cvec_mul (C function), 244
mad_cvec_mulc_r (C function), 244
mad_cvec_muln (C function), 244
mad_cvec_mulv (C function), 244
mad_cvec_nfft (C function), 245
mad_cvec_norm (C function), 243
mad_cvec_reim (C function), 243
mad_cvec_roll (C function), 242
mad_cvec_sub (C function), 244
mad_cvec_subc_r (C function), 244
mad_cvec_subn (C function), 244
mad_cvec_subv (C function), 244
mad_cvec_sum_r (C function), 242
mad_cvec_var_r (C function), 243
mad_fft_cleanup (C function), 251
mad_imat_copy (C function), 246
mad_imat_copym (C function), 246
mad_imat_eye (C function), 245
mad_imat_rev (C function), 245
mad_imat_roll (C function), 245
mad_imat_trans (C function), 246
mad_ivec_add (C function), 243
mad_ivec_addn (C function), 243
mad_ivec_copy (C function), 242

mad_ivec_divn (C function), 244
mad_ivec_fill (C function), 242
mad_ivec_minmax (C function), 242
mad_ivec_modn (C function), 244
mad_ivec_mul (C function), 244
mad_ivec_muln (C function), 244
mad_ivec_roll (C function), 242
mad_ivec_sub (C function), 244
mad_ivec_subn (C function), 244
mad_mat_center (C function), 245
mad_mat_copy (C function), 246
mad_mat_copym (C function), 246
mad_mat_det (C function), 249
mad_mat_div (C function), 247
mad_mat_divm (C function), 247
mad_mat_dmul (C function), 246
mad_mat_dmulm (C function), 246
mad_mat_eigen (C function), 249
mad_mat_eye (C function), 245
mad_mat_fft (C function), 249
mad_mat_gmsolve (C function), 248
mad_mat_gsolve (C function), 247
mad_mat_invc_r (C function), 247
mad_mat_invn (C function), 247
mad_mat_mul (C function), 246
mad_mat_muld (C function), 246
mad_mat_muldm (C function), 246
mad_mat_mulm (C function), 246
mad_mat_mult (C function), 246
mad_mat_multm (C function), 246
mad_mat_nfft (C function), 249
mad_mat_nsolve (C function), 248
mad_mat_pcacnd (C function), 248
mad_mat_rev (C function), 245
mad_mat_rfft (C function), 249
mad_mat_roll (C function), 245
mad_mat_rot (C function), 250
mad_mat_rotq (C function), 250
mad_mat_rotv (C function), 250
mad_mat_rotx (C function), 250
mad_mat_rotxy (C function), 250
mad_mat_rotxyz (C function), 250
mad_mat_rotxz (C function), 250
mad_mat_rotxzy (C function), 250
mad_mat_roty (C function), 250
mad_mat_rotyxz (C function), 250
mad_mat_rotyz (C function), 250
mad_mat_rotz (C function), 250

47. INDICES AND TABLES 276

mad_mat_rtbar (C function), 251
mad_mat_solve (C function), 247
mad_mat_ssolve (C function), 247
mad_mat_svd (C function), 248
mad_mat_svdcnd (C function), 248
mad_mat_sympconj (C function), 249
mad_mat_symperr (C function), 249
mad_mat_tmul (C function), 246
mad_mat_tmulm (C function), 246
mad_mat_torotq (C function), 251
mad_mat_torotv (C function), 250
mad_mat_torotxyz (C function), 250
mad_mat_torotxzy (C function), 250
mad_mat_torotyxz (C function), 250
mad_mat_trans (C function), 246
mad_mono_add (C function), 195
mad_mono_cat (C function), 196
mad_mono_cmp (C function), 195
mad_mono_copy (C function), 195
mad_mono_eq (C function), 195
mad_mono_fill (C function), 195
mad_mono_le (C function), 195
mad_mono_lt (C function), 195
mad_mono_max (C function), 195
mad_mono_min (C function), 195
mad_mono_ord (C function), 195
mad_mono_ordp (C function), 195
mad_mono_ordpf (C function), 195
mad_mono_print (C function), 196
mad_mono_prt (C function), 195
mad_mono_rcmp (C function), 195
mad_mono_rev (C function), 196
mad_mono_str (C function), 194
mad_mono_sub (C function), 195
mad_num_asinc (C function), 188
mad_num_asinhc (C function), 188
mad_num_dawson (C function), 189
mad_num_erf (C function), 189
mad_num_erfc (C function), 189
mad_num_erfcx (C function), 189
mad_num_erfi (C function), 189
mad_num_fact (C function), 188
mad_num_powi (C function), 188
mad_num_rand (C function), 204
mad_num_randi (C function), 204
mad_num_randjump (C function), 204
mad_num_randseed (C function), 204
mad_num_sign (C function), 188

mad_num_sign1 (C function), 188
mad_num_sinc (C function), 188
mad_num_sinhc (C function), 188
mad_num_wf (C function), 188
mad_num_xrand (C function), 204
mad_num_xrandi (C function), 204
mad_num_xrandseed (C function), 204
mad_vec_abs (C function), 243
mad_vec_add (C function), 243
mad_vec_addc_r (C function), 243
mad_vec_addn (C function), 243
mad_vec_center (C function), 243
mad_vec_copy (C function), 242
mad_vec_copyv (C function), 242
mad_vec_cplx (C function), 243
mad_vec_dif (C function), 249
mad_vec_difv (C function), 249
mad_vec_dist (C function), 243
mad_vec_distv (C function), 243
mad_vec_div (C function), 244
mad_vec_divc_r (C function), 244
mad_vec_divn (C function), 244
mad_vec_divv (C function), 244
mad_vec_dot (C function), 243
mad_vec_eval (C function), 242
mad_vec_fft (C function), 245
mad_vec_fill (C function), 242
mad_vec_kadd (C function), 245
mad_vec_kdot (C function), 243
mad_vec_ksum (C function), 242
mad_vec_mean (C function), 242
mad_vec_minmax (C function), 242
mad_vec_mul (C function), 244
mad_vec_mulc_r (C function), 244
mad_vec_muln (C function), 244
mad_vec_nfft (C function), 245
mad_vec_norm (C function), 243
mad_vec_rfft (C function), 245
mad_vec_roll (C function), 242
mad_vec_sub (C function), 244
mad_vec_subc_r (C function), 244
mad_vec_subn (C function), 244
mad_vec_subv (C function), 244
mad_vec_sum (C function), 242
mad_vec_var (C function), 243
mat:_reshapeto() (built-in function), 219
mat:add() (built-in function), 228
mat:angle() (built-in function), 230

47. INDICES AND TABLES 277

mat:bar() (built-in function), 231
mat:bytesize() (built-in function), 216
mat:center() (built-in function), 230
mat:circ() (built-in function), 221
mat:concat() (built-in function), 229
mat:conv() (built-in function), 234
mat:copy() (built-in function), 219
mat:corr() (built-in function), 234
mat:covar() (built-in function), 234
mat:cross() (built-in function), 230
mat:det() (built-in function), 233
mat:diag() (built-in function), 215
mat:dif() (built-in function), 231
mat:dist() (built-in function), 230
mat:div() (built-in function), 229
mat:dmul() (built-in function), 228
mat:dot() (built-in function), 229
mat:eigen() (built-in function), 233
mat:eq() (built-in function), 229
mat:eval() (built-in function), 231
mat:eye() (built-in function), 220
mat:fft() (built-in function), 234
mat:fill() (built-in function), 221
mat:filter() (built-in function), 222
mat:filter_out() (built-in function), 222
mat:foldl() (built-in function), 222
mat:foldr() (built-in function), 223
mat:foreach() (built-in function), 222
mat:get() (built-in function), 216
mat:getcol() (built-in function), 218
mat:getdiag() (built-in function), 219
mat:getdidx() (built-in function), 216
mat:geti() (built-in function), 216
mat:getidx() (built-in function), 216
mat:getij() (built-in function), 216
mat:getrow() (built-in function), 218
mat:getsub() (built-in function), 217
mat:getvec() (built-in function), 217
mat:gmsolve() (built-in function), 232
mat:gsolve() (built-in function), 232
mat:ifft() (built-in function), 234
mat:iminmax() (built-in function), 230
mat:infft() (built-in function), 234
mat:inner() (built-in function), 229
mat:inscol() (built-in function), 219
mat:insrow() (built-in function), 218
mat:inssub() (built-in function), 218
mat:insvec() (built-in function), 217

mat:inv() (built-in function), 229
mat:irfft() (built-in function), 234
mat:is_const() (built-in function), 220
mat:is_diag() (built-in function), 220
mat:is_imag() (built-in function), 220
mat:is_real() (built-in function), 220
mat:is_symm() (built-in function), 220
mat:is_symp() (built-in function), 220
mat:kadd() (built-in function), 231
mat:kdot() (built-in function), 231
mat:ksum() (built-in function), 231
mat:map() (built-in function), 222
mat:map2() (built-in function), 222
mat:map3() (built-in function), 222
mat:mean() (built-in function), 231
mat:mfun() (built-in function), 233
mat:minmax() (built-in function), 230
mat:mixed() (built-in function), 230
mat:movev() (built-in function), 221
mat:mul() (built-in function), 228
mat:muld() (built-in function), 229
mat:mult() (built-in function), 228
mat:nfft() (built-in function), 234
mat:norm() (built-in function), 230
mat:nsolve() (built-in function), 232
mat:ones() (built-in function), 220
mat:outer() (built-in function), 230
mat:pcacnd() (built-in function), 233
mat:pow() (built-in function), 229
mat:print() (built-in function), 237
mat:random() (built-in function), 220
mat:read() (built-in function), 237
mat:remcol() (built-in function), 219
mat:remrow() (built-in function), 218
mat:remsub() (built-in function), 218
mat:remvec() (built-in function), 217
mat:reshape() (built-in function), 219
mat:rev() (built-in function), 221
mat:rfft() (built-in function), 234
mat:roll() (built-in function), 221
mat:rot() (built-in function), 235
mat:rotq() (built-in function), 236
mat:rotv() (built-in function), 236
mat:rotx() (built-in function), 235
mat:rotxy() (built-in function), 235
mat:rotxyz() (built-in function), 235
mat:rotxz() (built-in function), 235
mat:rotxzy() (built-in function), 235

47. INDICES AND TABLES 278

mat:roty() (built-in function), 235
mat:rotyx() (built-in function), 235
mat:rotyxz() (built-in function), 235
mat:rotyz() (built-in function), 235
mat:rotyzx() (built-in function), 235
mat:rotz() (built-in function), 235
mat:rotzx() (built-in function), 235
mat:rotzxy() (built-in function), 235
mat:rotzy() (built-in function), 235
mat:rotzyx() (built-in function), 235
mat:same() (built-in function), 219
mat:scanl() (built-in function), 223
mat:scanr() (built-in function), 223
mat:seq() (built-in function), 220
mat:set() (built-in function), 216
mat:setcol() (built-in function), 218
mat:setdiag() (built-in function), 219
mat:seti() (built-in function), 217
mat:setrow() (built-in function), 218
mat:setsub() (built-in function), 217
mat:setvec() (built-in function), 217
mat:shiftv() (built-in function), 221
mat:shuffle() (built-in function), 220
mat:size() (built-in function), 216
mat:sizes() (built-in function), 216
mat:solve() (built-in function), 232
mat:ssolve() (built-in function), 232
mat:sub() (built-in function), 228
mat:svd() (built-in function), 233
mat:svdcnd() (built-in function), 233
mat:swpcol() (built-in function), 219
mat:swprow() (built-in function), 218
mat:swpsub() (built-in function), 218
mat:swpvec() (built-in function), 217
mat:symp() (built-in function), 221
mat:sympconj() (built-in function), 231
mat:symperr() (built-in function), 231
mat:t() (built-in function), 229
mat:tmul() (built-in function), 228
mat:torotq() (built-in function), 236
mat:torotv() (built-in function), 236
mat:torotxyz() (built-in function), 236
mat:torotxzy() (built-in function), 236
mat:torotyxz() (built-in function), 236
mat:torotyzx() (built-in function), 236
mat:torotzxy() (built-in function), 236
mat:torotzyx() (built-in function), 236
mat:tostring() (built-in function), 236

mat:totable() (built-in function), 236
mat:tr() (built-in function), 229
mat:trace() (built-in function), 229
mat:transpose() (built-in function), 229
mat:tsizes() (built-in function), 216
mat:unit() (built-in function), 230
mat:unm() (built-in function), 228
mat:variance() (built-in function), 231
mat:vec() (built-in function), 215
mat:vech() (built-in function), 215
mat:write() (built-in function), 237
mat:zeros() (built-in function), 220
mat:zpad() (built-in function), 234
Mathematical constants, 178
matrix() (built-in function), 214
mono:add() (built-in function), 193
mono:concat() (built-in function), 193
mono:copy() (built-in function), 192
mono:fill() (built-in function), 192
mono:max() (built-in function), 193
mono:min() (built-in function), 193
mono:ord() (built-in function), 193
mono:ordp() (built-in function), 193
mono:ordpf() (built-in function), 193
mono:reverse() (built-in function), 193
mono:same() (built-in function), 192
mono:sub() (built-in function), 193
mono:tostring() (built-in function), 193
mono:totable() (built-in function), 193
monomial() (built-in function), 192
Monomials, 191
monotonic() (built-in function), 259

N
nlogrange() (built-in function), 197
nrange() (built-in function), 197
num2log() (built-in function), 260
num2str() (built-in function), 260
num_t (C type), 176
Numerical constants, 178
Numerical ranges, 196

O
ochain() (built-in function), 190
openfile() (built-in function), 258
ord_t (C type), 194

47. INDICES AND TABLES 279

P
pause() (built-in function), 260
Physical constants, 179
printf() (built-in function), 258
PRNG, 201
prng:rand() (built-in function), 203
prng:randi() (built-in function), 203
prng:randn() (built-in function), 203
prng:randp() (built-in function), 203
prng:randseed() (built-in function), 203
prng:randtn() (built-in function), 203
prng_state_t (C type), 204
Pseudo-random number generator, 201
ptr_t (C type), 177

R
rand() (built-in function), 203
randi() (built-in function), 203
randn() (built-in function), 203
randnew() (built-in function), 202
randp() (built-in function), 203
randseed() (built-in function), 203
randset() (built-in function), 202
randtn() (built-in function), 203
range() (built-in function), 197
rep() (built-in function), 259
rng:add() (built-in function), 200
rng:adjust() (built-in function), 199
rng:bounds() (built-in function), 199
rng:copy() (built-in function), 199
rng:div() (built-in function), 200
rng:get() (built-in function), 199
rng:is_empty() (built-in function), 199
rng:last() (built-in function), 199
rng:log() (built-in function), 200
rng:mul() (built-in function), 200
rng:overlap() (built-in function), 199
rng:ranges() (built-in function), 199
rng:reverse() (built-in function), 199
rng:same() (built-in function), 199
rng:size() (built-in function), 199
rng:sub() (built-in function), 200
rng:tostring() (built-in function), 200
rng:totable() (built-in function), 200
rng:unm() (built-in function), 200
rng:value() (built-in function), 199
runonce() (built-in function), 260

S
same() (built-in function), 260
set_concept() (built-in function), 175
setidxs() (built-in function), 259
setkeys() (built-in function), 259
ssz_t (C type), 176
str2cmp() (built-in function), 260
str2str() (built-in function), 260
str2tbl() (built-in function), 260
str_t (C type), 177
strbracket() (built-in function), 258
strident() (built-in function), 258
strinter() (built-in function), 258
strnum() (built-in function), 258
strqsplit() (built-in function), 258
strqsplitall() (built-in function), 258
strquote() (built-in function), 258
strsplit() (built-in function), 258
strtrim() (built-in function), 258

T
Taylor Series, 251, 256
tbl2lst() (built-in function), 260
tbl2str() (built-in function), 260
tblcat() (built-in function), 259
tblcpy() (built-in function), 259
tbldeepcpy() (built-in function), 259
tblicpy() (built-in function), 259
tblorder() (built-in function), 259
tblrep() (built-in function), 259
toboolean() (built-in function), 260
tocomplex() (built-in function), 205
torange() (built-in function), 197
tostring() (built-in function), 260
totable() (built-in function), 260
TPSA, 256
Truncated Power Series Algebra, 256
typeid.concept (built-in variable), 175
Types, 172

U
Utility functions, 257

V
val2keys() (built-in function), 259
Vector and matrix, 212
vector() (built-in function), 214

47. INDICES AND TABLES 280

W
wprotect() (built-in function), 176
wrestrict() (built-in function), 175
wunprotect() (built-in function), 176

X
xrandnew() (built-in function), 202
xrng_state_t (C type), 204

	I LANGUAGE
	Introduction
	Presentation
	Installation
	Releases version

	Interactive Mode
	Batch Mode
	Online Help

	Scripting
	Lua and LuaJIT
	Lua primer
	Variables
	Control flow
	Functions
	Tables
	Methods

	Extensions
	Line comment
	Unary plus
	Local in table
	Lambda function
	Deferred expression
	Ranges
	Lua syntax and extensions

	Types
	Value vs reference

	Concepts
	Ecosystem

	Objects
	Creation
	Constructors
	Incomplete objects
	Classes
	Identification
	Customizing creation

	Inheritance
	Reading attributes
	Writing attributes
	Class instances
	Examples

	Attributes
	Methods
	Metamethods
	Flags
	Environments

	Beams
	Attributes
	Methods
	Metamethods
	Particles database
	Particle charges
	Examples

	Beta0 Blocks
	Attributes
	Methods
	Metamethods
	Examples

	Elements
	Taxonomy
	Attributes
	Methods
	Metamethods
	Elements
	SBend
	RBend
	Quadrupole
	Sextupole
	Octupole
	Decapole
	Dodecapole
	Solenoid
	Multipole
	TKicker
	Kicker, HKicker, VKicker
	Monitor, HMonitor, VMonitor
	RFCavity
	RFMultipole
	ElSeparator
	Wiggler
	BeamBeam
	GenMap
	SLink
	Translate
	XRotation, YRotation, SRotation
	ChangeRef
	ChangeDir
	ChangeNrj

	Flags
	Fringe fields
	Sub-elements
	Aperture
	Misalignment

	Sequences
	Attributes
	Methods
	Metamethods
	Sequences creation
	Element positions
	Element selections
	Indexes, names and counts
	Iterators and ranges
	Examples
	FODO cell
	SPS compact description
	Installing elements I
	Installing elements II

	MTables
	Attributes
	Methods
	Metamethods
	MTables creation
	Rows selections
	Indexes, names and counts
	Iterators and ranges
	Examples
	Creating a MTable
	Extending a MTable

	MADX
	Environment
	Importing Sequences
	Converting Scripts
	Converting Macros

	II ELEMENTS & COMMANDS
	Survey
	Command synopsis
	Survey mtable
	Geometrical tracking
	Slicing
	Sub-elements

	Examples

	Track
	Command synopsis
	Track mtable
	Dynamical tracking
	Slicing
	Sub-elements
	Particles status

	Examples

	Cofind
	Command synopsis
	Cofind mtable
	Examples

	Twiss
	Command synopsis
	Twiss mtable
	Tracking linear normal form
	Examples

	Match
	Command synopsis
	Environment
	Command
	Variables
	Constraints
	Objective
	Algorithms
	Stopping criteria
	Objective function
	Derivatives

	Console output
	Match command output

	Modules
	LSopt
	NLopt

	Examples
	Matching tunes and chromaticity
	Matching interaction point
	Fitting data
	Fitting data with derivatives
	Minimizing function

	Correct
	Command synopsis
	Correct mtable
	Examples

	Emit
	Plot
	Command synopsis

	III PHYSICS
	Introduction
	Local reference system
	Global reference system

	Geometric Maps
	Dynamic Maps
	Integrators
	Orbit
	Closed Orbit

	Optics
	Normal Forms
	Misalignments
	Aperture
	Radiation

	IV MODULES
	Types
	Typeids
	Primitive Types
	Extended Types

	Concepts
	Setting Concepts

	C Type Sizes
	C API

	Constants
	Numerical Constants
	Mathematical Constants
	Physical Constants

	Functions
	Mathematical Functions
	Generic Real-like Functions
	Generic Complex-like Functions
	Generic Vector-like Functions
	Generic Error-like Functions
	Special Functions
	Functions for Circular Sector

	Operators as Functions
	Math Operators
	Element Operators
	Logical Operators
	Relational Operators
	Object Operators

	Bitwise Functions
	Flags Functions

	Special Functions
	C API
	References

	Functors
	Constructors
	Functions

	Monomials
	Constructors
	Attributes
	Functions
	Methods
	Operators
	Iterators
	C API

	Numerical Ranges
	Constructors
	Empty Ranges
	Singleton Ranges
	Constant Ranges

	Attributes
	Functions
	Methods
	Operators
	Iterators

	Random Numbers
	Contructors
	Functions
	Methods
	Iterators
	C API
	References

	Complex Numbers
	Types promotion
	Constructors
	Attributes
	Functions
	Methods
	Operator-like Methods
	Real-like Methods
	Complex-like Methods
	Error-like Methods

	Operators
	C API
	References

	Linear Algebra
	Types promotion
	Constructors
	Attributes
	Functions
	Methods
	Special Constructors
	Sizes and Indexing
	Getters and Setters
	Cloning and Reshaping
	Matrix Properties
	Filling and Moving
	Mapping and Folding
	Mapping Real-like Methods
	Mapping Complex-like Methods
	Mapping Error-like Methods
	Mapping Vector-like Methods
	Folding Methods
	Scanning Methods
	Matrix Functions
	Operator-like Methods
	Special Methods
	Solvers and Decompositions
	Fourier Transforms and Convolutions
	Rotations
	Conversions
	Input and Output

	Operators
	Iterators
	C API
	Vector
	Matrix
	Rotations
	Misalignments
	Miscellaneous

	References

	Differential Algebra
	Introduction
	Representation
	Approximation
	Application
	Performance

	Constructors
	Functions
	Methods
	Operators
	Iterators
	C API

	Differential Maps
	Introduction
	Constructors
	Functions
	Methods
	Operators
	Iterators
	C API

	Miscellaneous Functions
	Files Functions
	Formating Functions
	Strings Functions
	Tables Functions
	Iterable Functions
	Mappable Functions
	Conversion Functions
	Generic Functions
	Special Functions

	Generic Physics
	External modules

	V PROGRAMMING
	MAD environment
	Tests
	Adding Tests

	Elements
	Adding Elements

	Commands
	Adding Commands

	Modules
	Adding Modules
	Embedding Modules

	Using C FFI

	VI Indices and tables
	Bibliography
	Index

